A curious feature of organ and organoid morphogenesis is that in certain
cases, spatial oscillations in the thickness of the growing "film" are
out-of-phase with the deformation of the slower-growing "substrate," while in
other cases, the oscillations are in-phase. The former cannot be explained by
elastic bilayer instability, and contradict the notion that there is a
universal mechanism by which brains, intestines, teeth, and other organs
develop surface wrinkles and folds. Inspired by the microstructure of the
embryonic cerebellum, we develop a new model of 2d morphogenesis in which
system-spanning elastic fibers endow the organ with a preferred radius, while a
separate fiber network resides in the otherwise fluid-like film at the outer
edge of the organ and resists thickness gradients thereof. The tendency of the
film to uniformly thicken or thin is described via a "growth potential".
Several features of cerebellum, +blebbistatin organoid, and retinal fovea
morphogenesis, including out-of-phase behavior and a film thickness amplitude
that is comparable to the radius amplitude, are readily explained by our simple
analytical model, as may be an observed scale-invariance in the number of folds
in the cerebellum. We also study a nonlinear variant of the model, propose
further biological and bio-inspired applications, and address how our model is
and is not unique to the developing nervous system.Comment: version accepted by Physical Review