4,631 research outputs found

    Continuous monitoring of the boundary-layer top with lidar

    Get PDF
    International audienceContinuous lidar observations of the top height of the boundary layer (BL top) have been performed at Leipzig (51.3° N, 12.4° E), Germany, since August 2005. The results of measurements taken with a compact, automated Raman lidar over a one-year period (February 2006 to January 2007) are presented. Four different methods for the determination of the BL top are discussed. The most promising technique, the wavelet covariance algorithm, is improved by implementing some modifications so that an automated, robust retrieval of BL depths from lidar data is possible. Three case studies of simultaneous observations with the Raman lidar, a vertical-wind Doppler lidar, and accompanying radiosonde profiling of temperature and humidity are discussed to demonstrate the potential and the limits of the four lidar techniques at different aerosol and meteorological conditions. The lidar-derived BL top heights are compared with respective values derived from predictions of the regional weather forecast model COSMO of the German Meteorological Service. The comparison shows a general underestimation of the BL top by about 20% by the model. The statistical analysis of the one-year data set reveals that the seasonal mean of the daytime maximum BL top is 1400 m in spring, 1800 m in summer, 1200 m in autumn, and 800 m in winter at the continental, central European site. BL top typically increases by 100?300 m per hour in the morning of convective days

    Quantitative assessment of pinning forces and the superconducting gap in NbN thin films from complementary magnetic force microscopy and transport measurements

    Full text link
    Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser deposition. Low-temperature magnetic force microscopy (MFM) images of the supercurrent vortices were measured after field cooling in a magnetic field of 3mT at various temperatures. Temperature dependence of the penetration depth has been evaluated by a two-dimensional fitting of the vortex profiles in the monopole-monopole model. Its subsequent fit to a single s-wave gap function results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in perfect agreement with previous reports. The pinning force has been independently estimated from local depinning of individual vortices by lateral forces exerted by the MFM tip and from transport measurements. A good quantitative agreement between the two techniques shows that for low fields, B << Hc2, MFM is a powerful and reliable technique to probe the local variations of the pinning landscape. We also demonstrate that the monopole model can be successfully applied even for thin films with a thickness comparable to the penetration depth.Comment: 6 pages, 6 figures, 2 table

    Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    Full text link
    Microstructura lly clean, isov alently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at m0H = 35 T for H||ab and m0H = 18 T for H||c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.Comment: 5 pages, 4 figure

    Light Element Evolution and Cosmic Ray Energetics

    Get PDF
    Using cosmic-ray energetics as a discriminator, we investigate evolutionary models of LiBeB. We employ a Monte Carlo code which incorporates the delayed mixing into the ISM both of the synthesized Fe, due to its incorporation into high velocity dust grains, and of the cosmic-ray produced LiBeB, due to the transport of the cosmic rays. We normalize the LiBeB production to the integral energy imparted to cosmic rays per supernova. Models in which the cosmic rays are accelerated mainly out of the average ISM significantly under predict the measured Be abundance of the early Galaxy, the increase in [O/Fe] with decreasing [Fe/H] notwithstanding. We suggest that this increase could be due to the delayed mixing of the Fe. But, if the cosmic-ray metals are accelerated out of supernova ejecta enriched superbubbles, the measured Be abundances are consistent with a cosmic-ray acceleration efficiency that is in very good agreement with the current epoch data. We also find that neither the above cosmic-ray origin models nor a model employing low energy cosmic rays originating from the supernovae of only very massive progenitors can account for the 6^6Li data at values of [Fe/H] below -2.Comment: latex 19 pages, 2 tables, 10 eps figures, uses aastex.cls natbib.sty Submitted to the Astrophysical Journa

    Exciton entanglement in two coupled semiconductor microcrystallites

    Full text link
    Entanglement of the excitonic states in the system of two coupled semiconductor microcrystallites, whose sizes are much larger than the Bohr radius of exciton in bulk semiconductor but smaller than the relevant optical wavelength, is quantified in terms of the entropy of entanglement. It is observed that the nonlinear interaction between excitons increases the maximum values of the entropy of the entanglement more than that of the linear coupling model. Therefore, a system of two coupled microcrystallites can be used as a good source of entanglement with fixed exciton number. The relationship between the entropy of the entanglement and the population imbalance of two microcrystallites is numerically shown and the uppermost envelope function for them is estimated by applying the Jaynes principle.Comment: 16 pages, 6 figure

    Energy spectra of cosmic-ray nuclei at high energies

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to 1014\sim 10^{14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E2.66±0.04E^{-2.66 \pm 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/nn energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080±0.0250.080 \pm 0.025 (stat.)±0.025 \pm 0.025 (sys.) at \sim 800 GeV/nn, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical Journa

    Self-energy of Lambda in finite nuclei

    Full text link
    The self--energy of the strange baryon Λ\Lambda in 17^{17}O is calculated using a microscopic many--body approach which accounts for correlations beyond the mean--field or Hartree--Fock approximation. The non-locality and energy-dependence of the Λ\Lambda self--energy is discussed and the effects on the bound and scattering states are investigated. For the nucleon--hyperon interaction, we use the potential models of the J\"{u}lich and Nijmegen groups.Comment: 17 pages, Revtex Latex style, 7 figs include
    corecore