257 research outputs found

    Mentalizing in an economic games context is associated with enhanced activation and connectivity in the left temporoparietal junction.

    Get PDF
    Prior studies in Social Neuroeconomics have consistently reported activation in social cognition regions during interactive economic games, suggesting mentalizing during economic choice. Such mentalizing occurs during active participation in the game, as well as during passive observation of others' interactions. We designed a novel version of the classic false-belief task (FBT) in which participants read vignettes about interactions between agents in the ultimatum and trust games and were subsequently asked to infer the agents' beliefs. We compared activation patterns during the economic games FBT to those during the classic FBT using conjunction analyses. We find significant overlap in the left temporoparietal junction (TPJ) and dorsal medial prefrontal cortex, as well as the temporal pole (TP) during two task phases: belief formation and belief inference. Moreover, generalized Psychophysiological Interaction (gPPI) analyses show that during belief formation, the right TPJ is a target of both the left TPJ and the right TP seed regions, whereas during belief inferences all seed regions show interconnectivity with each other. These results indicate that across different task types and phases, mentalizing is associated with activation and connectivity across central nodes of the social cognition network. Importantly, this is the case for both the novel economic games and the classic FBTs

    Reply to Schild et al.: antisocial personality moderates the causal influence of costly punishment on trust and trustworthiness

    Get PDF
    A growing literature at the intersection of personality psychology and behavioral economics investigates the interplay between personality and decision making in social dilemmas (1, 2). Engelmann et al. (3) extend prior research in this area by investigating the role of antisocial personality in the context of a trust game with and without punishment.Social decision makin

    Improving tree mortality models by accounting for environmental influences

    Get PDF
    Tree-ring chronologies have been widely used in studies of tree mortality where variables of recent growth act as an indicator of tree physiological vigour. Comparing recent radial growth of live and dead trees thus allows estimating probabilities of tree mortality. Sampling of mature dead trees usually provides death-year distributions that may span over years or decades. Recent growth of dead trees (prior to death) is then computed during a number of periods, whereas recent growth (prior to sampling) for live trees is computed for identical periods. Because recent growth of live and dead trees is then computed for different periods, external factors such as disturbance or climate may influence growth rates and, thus, mortality probability estimations. To counteract this problem, we propose the truncating of live-growth series to obtain similar frequency distributions of the "last year of growth" for the populations of live and dead trees. In this paper, we use different growth scenarios from several tree species, from several geographic sources, and from trees with different growth patterns to evaluate the impact of truncating on predictor variables and their selection in logistic regression analysis. Also, we assess the ability of the resulting models to accurately predict the status of trees through internal and external validation. Our results suggest that the truncating of live-growth series helps decrease the influence of external factors on growth comparisons. By doing so, it reinforces the growth-vigour link of the mortality model and enhances the model's accuracy as well as its general applicability. Hence, if model parameters are to be integrated in simulation models of greater geographical extent, truncating may be used to increase model robustness

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    corecore