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Abstract
In simple instrumental-learning tasks, humans learn to seek gains and to avoid losses equally well. Yet, two effects of valence are
observed. First, decisions in loss-contexts are slower. Second, loss contexts decrease individuals’ confidence in their choices.
Whether these two effects are two manifestations of a single mechanism or whether they can be partially dissociated is unknown.
Across six experiments, we attempted to disrupt the valence-induced motor bias effects by manipulating the mapping between
decisions and actions and imposing constraints on response times (RTs). Our goal was to assess the presence of the valence-
induced confidence bias in the absence of the RT bias. We observed both motor and confidence biases despite our disruption
attempts, establishing that the effects of valence on motor and metacognitive responses are very robust and replicable.
Nonetheless, within- and between-individual inferences reveal that the confidence bias resists the disruption of the RT bias.
Therefore, although concomitant in most cases, valence-induced motor and confidence biases seem to be partly dissociable.
These results highlight new important mechanistic constraints that should be incorporated in learning models to jointly explain
choice, reaction times and confidence.

Keywords Meta-cognition . Reinforcement-leaning . Confidence . Valence-induced bias

Introduction

In the reinforcement learning context, reward-seeking and
punishment-avoidance present an intrinsic and fundamental
informational asymmetry. In the former situation, accurate
choice (i.e., reward maximization) increases the frequency
of the reinforcer (the reward). In the latter situation, accurate
choice (i.e., successful avoidance), optimal behavior
decreases the frequency of the response. Accordingly, most

simple incremental “law-of-effect”-like models would predict
higher performance in the reward seeking compared the pun-
ishment avoidance situation. Yet, humans learn to seek reward
and to avoid punishment equally-well (Fontanesi et al., 2019;
Guitart-Masip et al., 2012; Palminteri et al., 2015). This is not
only robustly demonstrated in experimental data, but also
nicely explained by context-dependent reinforcement-learn-
ing models (Fontanesi et al., 2019; Palminteri et al., 2015),
which can be seen as formal computational instantiations of
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Mowrer’s two-factor theory (Mowrer, 1952). On top of this
remarkable symmetry in choice accuracy between gain and
loss contexts, two sets of recent studies independently report-
ed that outcome valence asymmetrically affects confidence
and response times (RTs). First, learning from punishment
increases individuals’RTs, slowing down themotor execution
of the choice (Fontanesi et al., 2019; Jahfari et al., 2019). This
robust phenomenon is consistent with a motor Pavlovian bias,
which posits that desirable contexts favor motor execution and
approach behavior, whereas undesirable contexts hinder them
(Boureau and Dayan, 2011; Guitart-Masip et al., 2012).

Second, learning from punishment decreases individuals’
confidence in their choices (Lebreton et al., 2019). Confidence
judgements can be defined and operationalized as the subjec-
tive estimations of the probability of being correct (Fleming
and Daw, 2017; Pouget et al., 2016). As such, a confidence
judgment is a metacognitive operation, which quantifies the
degree to which an individual is aware of his or her success or
failure (Fleming and Dolan, 2012; Yeung and Summerfield,
2012). Confidence judgments are thought to be critical in the
context of meta-control—the flexible adjustment of
behavior—because they are key to monitor and reevaluate
previous decisions (Folke et al., 2016) to track changes in
the environment (Heilbron and Meyniel, 2019; Vinckier
et al., 2016) or to arbitrate between different strategies (Daw
et al., 2005; Donoso et al., 2014). The demonstrations that
confidence judgments can be biased by the outcome valence
in different tasks (Lebreton et al., 2018, 2019) suggest that,
similar to instrumental processes, metacognitive processes
could be under the influence of Pavlovian processes.

Our goal was to investigate the link between the valence-
induced motor and confidence biases. We focused on two re-
search questions: first, are valence-induced motor and confi-
dence biases robust and replicable? Second, can the confidence
bias be observed in the absence of the motor bias? Regarding
the second question, previous research has yielded conflicting
results that generated two opposing predictions. On the one
hand, numerous studies documented behavioral and neural dis-
sociations between perceptual, cognitive or motor operations,
and confidence or metacognitive judgments (Fleming et al.,
2012; Miele et al., 2011; Qiu et al., 2018). Likewise, brain
lesions and stimulation protocols have been shown to disrupt
confidence ratings and metacognitive abilities without
impairing cognitive or motor functions (Fleming et al., 2014,
2015; Rounis et al., 2010), although see also Bor et al. (2017).
These dissociations between decision and metacognitive vari-
ables suggest that the valence-induced confidence bias could be
observed in the absence of a response time bias.

On the other hand, several studies suggest that decision and
metacognitive variables are tightly linked—both in perceptual
(Geller and Whitman, 1973; Vickers et al., 1985) and value-
based tasks (De Martino et al., 2013; Folke et al., 2016;
Lebreton et al., 2015). This coupling is notably embedded in

many sequential-sampling models which rely on a single
mechanism to produce decisions, response times, and confi-
dence judgments (van den Berg et al., 2016; DeMartino et al.,
2013; Moran et al., 2015; Pleskac and Busemeyer, 2010;
Ratcliff and Starns, 2009, 2013; Yu et al., 2015). Beyond this
mechanistic hypothesis, it has been recently suggested that
people use their own RT as a proxy for stimulus strength
and certainty judgments, creating a direct, causal link from
RT to confidence (Desender et al., 2017; Kiani et al., 2014).
These results could imply that our previously reported effects
of valence on confidence (Lebreton et al., 2019) are no more
than a spurious consequence of the effect of valence on RTs
(Fontanesi et al., 2019; Jahfari et al., 2019). In other words,
participants could have simply observed that they were slower
in the loss context and used this information to generate lower
confidence judgments in these contexts.

To address our research questions, we developed several
versions of a probabilistic, instrumental-learning task, where
participants have to learn to seek rewards or to avoid losses
(Fontanesi et al., 2019; Lebreton et al., 2019; Palminteri et al.,
2015). We attempted to cancel the effects of losses on RTs
while recording confidence judgments to assess the presence
of the valence-induced confidence bias. To this end, we mod-
ified the standard mapping between the available options and
the way participants could select them, thereby disrupting the
link between decision and motor execution of the choice. In
another experiment, we also used a different strategy and im-
posed time pressure on the choice to constrain decision time.

In total, we used two published datasets (Lebreton et al.,
2019) and original data collected from four new experiments,
where we manipulated in several ways the option-action map-
ping (Experiments 3-5) and applied time pressure
(Experiment 6). We then tested (1) the robustness of the
valence-induced motor and confidence biases, and (2) wheth-
er the confidence bias could be observed in the absence of the
motor bias. Overall, our results show that response times are
slower in loss than gain contexts in almost all experiments. In
other words, the motor bias is highly robust, because it sur-
vived most of our disruption attempts, despite being severely
attenuated. In all datasets, confidence was lower in loss than in
gain contexts, indicating that the confidence bias is highly
replicable and is robust to variations in the motor bias effect
sizes. The confidence bias also is observed in the condition
where the motor bias was absent, suggesting that valence-
induced motor and confidence biases are partly dissociable.

Materials and methods

Subjects

All studies were approved by the local Ethics Committee of
the Center for Research in Experimental Economics and
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political Decision-making (CREED), at the University of
Amsterdam. All subjects gave informed consent before par-
taking in the study. The subjects were recruited from the
laboratory's participant database (www.creedexperiment.nl).
A total of 108 subjects took part in this set of 6 separate
experiments (Table 1). They were compensated with a com-
bination of a show-up fee (5€), and additional gains and/or
losses depending on their performance during the learning
task: Experiment 1 had an exchange rate of 1 (in-game euros
= payout); Experiments 2-6 had an exchange rate of 0.3 (in
game euros = 0.3 payout euros, participants were clearly in-
formed of this exchange rate). In addition, in experiments 2-6,
three trials (one per session) were randomly selected for a
potential 5 euros bonus each, attributed based on the confi-
dence incentivization scheme (see below).

Power analysis and sample size determination Power analysis
were performed with GPower.3.1.9.2. The sample size for all
experiments was determined prior to the start of the experi-
ments based on the main effects of valence (gain – loss) on
confidence judgments and RTs from Experiments 1 and 2 –
reported in (Lebreton et al., 2019). For confidence judgments,
Cohen’s d was estimated to be: Exp. 1: d = 1.340, t17 = 5.69, P
= 2.67×10-4; Exp. 2: d = 0.926, t17 = 3.93, P = 1.08×10-3. For
a similar within-subject design, a sample of N = 17 subjects is
sufficient to reach a power greater than 95% with a two-tailed
one-sample t-test.

For RTs, Cohen’s d was estimated to be: Exp. 1: d = 0.858,
t17 = 3.64, P = 2.03×10-3; Exp. 2: d = 0.848, t17 = 3.60, P =
2.22×10-3. For a similar within-subject design, a sample of N
= 17 subjects is sufficient to reach a power greater than 95%
with a two-tailed one-sample t-test.

Learning task - general

In this study, we iteratively designed six experiments, aiming
at investigating the impact of context valence and information
on choice accuracy, confidence, and response times, in a
reinforcement-learning task. All experiments were adapted
from the same basic experimental paradigm (see also Fig. 1
and Figure S.1): participants repeatedly faced pairs of abstract
symbols probabilistically associated with monetary outcomes
(gains or losses), and they had to learn to choose the most
advantageous symbol of each pair (also referred to as context),
by trial and error. Two main factors were orthogonally manip-
ulated (Palminteri et al., 2015): valence (i.e., some contexts
only provide gains, and others losses) and information (some
contexts provide information about the outcome associated
with both chosen and unchosen options—complete informa-
tion—, whereas others only provided information about the
chosen option—partial information). In addition, at each trial,
participants reported their confidence in their choice on a
graded scale as the subjective probability of having made a
correct choice (Fig. 1). In all experiments but one (Exp. 2-6),
those confidence judgments were elicited in an incentive-
compatible way (Ducharme and Donnell, 1973; Lebreton
et al., 2018, 2019; Schlag et al., 2015).

Results fromExperiments 1 and 2 were previously reported
in Lebreton et al. (2019): briefly, we found that participants
exhibit the same level of choice accuracy in gain and loss
contexts but are less confident in loss contexts. In addition,
they appeared to be slower to execute their choices in loss
contexts. In order to evaluate the interdependence between
the effects of valence on RT and confidence, we successively
designed three additional tasks (Fig. 1A and Figure S.1C-E).
In those tasks, we modified the response setting to blur the

Table 1. Demographics and behavior

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Gender
M/F

8/10 8/10 10/8 10/8 6/12 9/9

Age (yr)
mean ± STD

24.6 ± 8.50 24.6 ± 4.30 22.72 ± 3.24 23.84 ± 4.12 20.61 ± 1.77 22.35±3.49

Performance
mean ± SEM

76.50 ± 2.38 77.04 ± 1.69 80.00 ± 2.82 75.33 ± 2.34 73.40 ± 2.83 63.60 ± 2.88

Confidence
mean ± SEM

79.19 ± 1.49 81.11 ± 1.58 78.78 ± 2.61 78.35 ± 2.24 78.09 ± 1.75 72.99 ± 2.14

Correlation(conf, RT)
mean ± SEM
t(17)
(P-val)

-0.30 ±0.05
-5.31
(<0.001)***

-0.41 ± 0.03
-13.32
(<0.001)***

-0.18 ± 0.03
-5.55
(<0.001)***

-0.16 ± 0.03
-5.42
(<0.001)***

-0.10 ± 0.02
-4.87
(<0.001)***

-0.12 ± 0.04
-3.03
(0.008)**

The correlation between confidence and RT was performed at the session level using Pearson’s R, then averaged at the individual level. Reported
statistics correspond to a random-effects analysis (one sample t-test) performed at the population level

STD, standard deviation; SEM, standard error of the mean; T, Student t-value

*P < 0.05; **P < 0.01; ***P < 0.001
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effects of valence on RT, with the goal to assess the effects of
valence on confidence in the absence of an effect on RT. In a
sixth task we imposed a strict time pressure on decisions (Fig.
1A and Figure S.1.F). All subjects also performed a Transfer
task (Lebreton et al., 2019; Palminteri et al., 2015). Data from
this additional task is not relevant for our main question of
interest and is therefore not analyzed in the present
manuscript.

Learning task - details

All tasks were implemented using MatlabR2015a®
(MathWorks) and the COGENT toolbox (http://www.vislab.
ucl.ac.uk/cogent.php). In all experiments, the main learning
task was adapted from a probabilistic instrumental learning

task used in a previous study (Palminteri et al., 2015).
Invited participants were first provided with written instruc-
tions, which were reformulated orally if necessary. They were
explained that the aim of the taskwas to maximize their payoff
and that gain seeking and loss avoidance were equally impor-
tant. In each of the three learning sessions, participants repeat-
edly faced four pairs of cues, taken from Agathodaimon al-
phabet. The four cue pairs corresponded to four conditions
and were presented 24 times in a pseudo-randomized and
unpredictable manner to the subject (intermixed design). Of
the four conditions, two corresponded to reward conditions,
and two to loss conditions. Within each pair, and depending
on the condition, the two cues of a pair were associated with
two possible outcomes (1€/0€ for the gain and -1€/0€ for the
loss conditions in Exp. 1; 1€/0.1€ for the gain and -1€/-0.1€

Fig. 1 Experimental design. (A) Behavioral tasks for Experiments 1-6.
Successive screens displayed in one trial are shown from left to right with
durations in ms. All tasks are based on the same principle, originally
designed for experiments 1-2 (top line): after a fixation cross,
participants are presented with a couple of abstract symbols displayed
on a computer screen and have to choose between them. They are there-
after asked to report their confidence in their choice on a numerical scale.
Note that experiment 1 featured a 0-10 scale, and experiments 2-6 fea-
tured a 50-100% scale. Outcome associated with the chosen symbol is
revealed, sometimes paired with the outcome associated with the
unchosen symbol—depending on the condition. For experiments 3-5

(bottom line), options are displayed on a vertical axis. Besides, the
response mapping (how the left vs right arrow map to the upper vs
lower symbol) is only presented after the symbol display, and the
response has to be given within one second of the response mapping
screen onset. A short empty screen is used as a mask, between the
symbol display and the response mapping for Experiments 4-5.
Experiment 6 is similar to experiment 2 (top line), except that a shorter
duration is allowed from the symbol presentation to the choice Tasks
specificities are indicated below each screen. See also Figure S1 for a
complete overview of all 6 experiments. (B) Experiment 1 payoff matrix.
(C) Experiments 2-6 payoff matrix
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for the loss conditions in Exp. 2-6) with reciprocal (but inde-
pendent) probabilities (75%/25% and 25%/75%); see
Lebreton et al. (2019) for a detailed rationale.

Experiments 1, 2, and 6 were very similar (Fig. 1A and
Figure S.1A-B & F): at each trial, participants first viewed a
central fixation cross (500-1,500 ms). Then, the two cues of a
pair were presented on each side of this central cross. Note that
the side in which a given cue of a pair was presented (left or
right of a central fixation cross) was pseudo-randomized, such
as a given cue was presented an equal number of times on the
left and the right of the screen. Subjects were required to select
between the two cues by pressing the left or right arrow on the
computer keyboard, within a 3,000 ms (Exp. 1-2) or 1,000 ms
(Exp. 6) time window. After the choice window, a red pointer
appeared below the selected cue for 500 ms. Subsequently,
participants were asked to indicate how confident they were in
their choice. In Experiment 1, confidence ratings were simply
given on a rating scale without any additional incentivization.
To perform this rating, they could move a cursor, which ap-
peared at a random position, to the left or to the right using the
left and right arrows and validate their final answer with the
spacebar. This rating step was self-paced. Finally, an outcome
screen displayed the outcome associated with the selected cue,
accompanied with the outcome of the unselected cue if the
pair was associated with a complete-feedback condition.

In Experiment 3, we dissociated the option display and
motor response: symbols were first presented on a vertical axis
(2s). During this period, participants could choose their pre-
ferred symbol but were uncertain about which button to press
to select their preferred symbol. This uncertainty was resolved
in the next task phase, in which two horizontal cues indicated
which of the left versus right response button could be used to
select the top versus bottom symbol (Fig. 1A and
Figure S.1C). In addition, we imposed a time limit on the
response selection (<1 s) to incentivize participants to make
their decision during the symbol presentation and allow only
an execution of a choice that was already made during the
response mapping screen. In Experiment 4, we added a mask
(empty screen 0.5-1 s) between the symbol presentation and
the response mapping (Fig. 1A and Figure S.1D). This further
strengthened the encouragement to make a decision during the
symbol presentation to reduce task load, because participants
would then only have to retain the information about the se-
lected location (top vs. bottom) during the mask period. In
Experiment 5, we introduced a jitter (variable time duration;
2-3 s) at the symbol presentation screen (Fig. 1A and
Figure S.1E) to further discourage temporal expectations and
motor preparedness during the decision period. Finally,
Experiment 6 was adapted from Experiment 2, but addition-
ally imposed a strict time pressure on the choice, in an attempt
to incentive participants to counteract the slowing down due to
the presence of losses (Fig. 1A and Figure S.1F). In all exper-
iments, response time is defined as the time between the onset

of the screen conveying the response mapping (Symbol for
Exp. 1-2 & 6; Choice for Exp. 3-5; see Fig. 1A and
Figure S.1), and the key press by the participant.

Matching probability and incentivization

In Experiment 2-6, participant’s reports of confidence were
incentivized via a matching probability procedure that is based
on the Becker-DeGroot-Marshak (BDM) auction (Becker
et al., 1964) Specifically, participants were asked to report as
their confidence judgment their estimated probability (p) of
having selected the symbol with the higher average value (i.e.,
the symbol offering a 75% chance of gain (G75) in the gain
conditions, and the symbol offering a 25% chance of loss
(L25) in the loss conditions) on a scale between 50% and
100%. A random mechanism, which draws a number (r) in
the interval [0.5 1], is then implemented to select whether the
subject will be paid an additional bonus of 5 euros as follows:
If p ≥ r, the selection of the correct symbol will lead to a bonus
payment; if p < r, a lottery will determine whether an addi-
tional bonus is won. This lottery offers a payout of 5 euros
with probability r and 0 with probability 1-r. This procedure
has been shown to incentivize participants to truthfully report
their true confidence regardless of risk preferences (Hollard
et al., 2016; Karni, 2009). Participants were trained on this
lottery mechanism and informed that up to 15 euros could
be won and added to their final payment via the MP mecha-
nism applied on one randomly chosen trial at the end of each
learning session (3×5 euros). Therefore, the MP mechanism
screens were not displayed during the learning sessions.

Variables

In all experiments, response time is defined as the time be-
tween the onset of the screen conveying the response mapping
(Symbol for Exp. 1-2 & 6; Choice for Exp. 3-5; see Fig. 1A
and Figure S.1), and the key press by the participant.
Confidence ratings in Exp. 1 were transformed form their
original scale (0-10) to a probability scale, (50-100%), using
a simple linear mapping: confidence = (50 + 5 × rating)/100.

Statistics

All statistical analyses were performed using Matlab R2015a.
All reported p-values correspond to two-sided tests. T-tests
refer to a one sample t-test when comparing experimental data
to a reference value (e.g., chance: 0.5) and paired t-tests when
comparing experimental data from different conditions.

Two-way repeated measures ANOVAs testing for the role
of valence, information, and their interaction were performed
at the individual experiment level. One-way ANOVAs were
used on main effects (e.g., individual averaged accuracy in
gains minus losses) to test for the effect of experiments.
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Generalized linear mixed-effect (glme) models include a
full subject-level random-effects structure (intercepts and
slopes for all predictor variables). The models were estimated
using Matlab’s fitglme function, which maximize the maxi-
mum pseudo-likelihood of observed data under the model
(Matlab’s default option). Choice accuracy was modelled
using a binomial response function distribution (logistic re-
gression), whereas confidence judgments and response times
were modelled using a Normal response function distribution
(linear regression). For instance, the linear mixed-effect
models for choice accuracy can be written in Wilkinson-
Rogers notation as:

Choice_accuracy ~ 1 + Val. + Inf. + Val. * Inf. + Fix. +
Stim. + Mask. + Sess. + (1 + Val. + Inf. + Val. * Inf. +
Fix. + Stim. + Mask. + Sess. |Subject),
With Val: valence; Inf: information; Fix.: fixation dura-
tion (only available in Experiments 4-5); Stim.; stimulus
display duration (only available in Experiment 5);
Mask: Mask duration (only available in Experiments
4-5); Sess: session number.

Note that Val. and Inf. are coded as 0/1, but that the inter-
action term Val*Inf was computed with Val. and Inf. coded as
−1/1 and then rescaled to 0/1.

The robust regressions were performed with Matlab’s
robustfit function, using default settings. The algorithm uses
iteratively reweighted least squares with the bisquare
weighting function to decrease the impact of extreme data-
points (outliers) on estimated regression coefficients.

Results

First, we evaluated the effects of our manipulation of the dis-
play and response settings across the experiments on average
levels of choice accuracy and confidence ratings using multi-
ple independent one-way ANOVAs. We found significant
effects of the experiments on the average levels of accuracy
(F(5,102) = 5.72, P = 1.00×10-4, η2 = 0.21), mostly driven by
a drop of accuracy in experiment 6 (see Table 1 and Figure S.
2), but no effects on average levels of confidence ratings
(F(5,102) = 1.50, P = 0.1953, η2= 0.07; Table 1). We also
computed, at the session level (participants underwent 3 sep-
arate learning sessions per experiment), the correlations be-
tween confidence ratings and RT. When averaged at the indi-
vidual level and tested at the population level (one sample t-
test), this measure of the linear relationship between RT and
confidence was very significant in all experiments (Exp. 1-6:
all Ps < 0.01; Table 1). The consistent negative and significant
correlations across six experiments indicate that confidence is
robustly associated with RT regardless of option-action map-
ping or time pressure manipulations, suggesting a strong link

between instrumental and metacognitive processes. Yet, the
correlation between confidence and RTwas modulated by our
experimental manipulations (effect of experiment: F(5, 102) =
9.91, P < 0.001, η2 = 0.32); post-hoc tests revealed that it was
significantly altered by all our experimental manipulations in
Exp. 3-6 (Figure S. 2).

Next, we analyzed the effects of our experimental manip-
ulation (valence and information) on the observed behavioral
variables (choice accuracy, confidence, RT), using repeated
measures ANOVAs in each individual study (Fig. 2; Table 2).
The parallel analyses of choice accuracy and confidence rat-
ings replicated the results reported in (Fontanesi et al., 2019;
Lebreton et al., 2019; Palminteri et al., 2015). Indeed, partic-
ipants were more accurate in complete information contexts in
five of six experiments (Table 2; main effect of information on
accuracy, Exp. 1-5:Ps < 0.05; Exp. 6:P = 0.1570). The effects
of information on accuracy were actually not significantly
different across our different experiments (Figure S. 3; effect
of experiment: F(5, 102) = 0.52; P = 0.7289 η2 = 0.03). On the
other hand, participants learned equally well in gain and loss
contexts, as they exhibited similar levels of accuracy in gain
and loss contexts in all experiments (Table 2; main effect of
valence on accuracy, Exp. 1-6: all Ps > 0.3; Figure S. 3; effect
of experiment: F(5, 102) = 0.35, P = 0.884, η2 = 0.02).

Despite similar performances in gain and loss contexts, and
despite our attempt to cancel the valence-induced motor bias
with our manipulations of the option-action mapping and time
pressure, participants were slower in loss contexts in experi-
ments 1-4 & 6 (Table 2; main effect of valence on RT: all Ps <
0.01). These results not only replicate the results reported in
(Fontanesi et al., 2019), but also assert the robustness of the
valence-induced motor bias to the manipulation of response
setups in human instrumental learning. Still, our experimental
manipulations significantly reduced the motor bias in Exp. 3-5
(Figure S. 3; effect of experiment: F(5, 102) = 7.98, P < 0.001,
η2 = 0.28).

Importantly, despite similar performance in gain and loss
contexts, participants were less confident in loss contexts
(Table 2; main effect of valence on confidence, Exp. 1-6: all
Ps < 0.01), with very similar effect sizes across all experi-
ments (Figure S. 3; F(5, 102) = 1.26, P = 0.289, η2 = 0.06).
These effects were mitigated when more information was
available (Table 2; interaction valence × information on con-
fidence: all Ps < 0.05). These results not only replicate those
reported in Lebreton et al. (2019) but also assert the robustness
of the valence-induced confidence bias.

Overall, the analyses of the data collected in six different
versions of our experiment (N = 108) clearly underline the
remarkable robustness of the effects of outcome valence on
both confidence and RT. Only one experimental condition
succeeded in cancelling the valence-induced motor bias
(Experiment 5). Note that in this experiment, we still observed
the confidence bias as evidenced by a significant main effect
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of valence on confidence (Table 2; F(1,17) = 16.71,P < 0.001,
η2 = 0.15), but not on RT (F(1,17) = 1.97, P = 0.178, η2 =
0.001). This suggests that the effects of outcome valence on
confidence and RT are partly dissociable. In other words, we
can observe a lower confidence in loss contexts, even when
RTs are indistinguishable from gain contexts.

In order to give a comprehensive overview of the rela-
tionship between accuracy, confidence, and RT, and to
quantify the effects of the different available predictors
on these behavioral measures, we also ran generalized
linear mixed-effect regressions. Independent variables in-
cluded not only valence, information, and their interaction
but also the different available timings (e.g., duration of
the stimulus or mask display) and a linear trend account-
ing for the session effects (see Methods for details). These
sensitive trial-by-trial analyses replicated the main
ANOVA results reported above regarding the effects of
valence and information on performance, confidence, and
RT (Figure 3; Tables 3, 4, and 5). They also confirmed
that, in Experiment 5, no effect of valence can be detected
on RT and performance (P = 0.349 and P = 0.620),
whereas a robust effect is observed on confidence (P =
0.002).

We also ran an additional mixed model, which estimated
the effect of our experimental factors on confidence, while
controlling for RTs—i.e., including RTs in the dependent var-
iables (Table 6). Importantly, and replicating previous find-
ings (Lebreton et al., 2019), the main effect of valence on

confidence remained significant in all experiments (P <
0.001), providing additional evidence that the valence-
induced confidence bias is partially dissociable from the
valence-induced motor bias.

Because the valence-induced motor bias—i.e., the
slowing down of RTs in loss compared to gain
contexts—was extremely robust to our experimental ma-
nipulations aiming at cancelling it, the ANOVA and re-
gressions above provide only limited evidence on whether
valence-induced decreasing on confidence can be ob-
served in the absence of the valence-induced slowing of
RT. In the following paragraphs, we therefore used a dif-
ferent analytical strategy leveraging inter-individual dif-
ferences to test this hypothesis. We assessed the link be-
tween individual slowing down (RT in gain – loss) and
individual decreases in confidence (confidence in
gain – loss) in our full sample and in each individual
study using robust linear regressions (see Methods for
details). In those regressions, the coefficients for the in-
tercept and slope quantify two different but equally im-
portant signals: First, the y-intercept represents a theoret-
ical individual who exhibits no effect of valence on RT
(RT in gain – loss = 0; Fig. 4A): an intercept significantly
different from 0 therefore indicates that a significant ef-
fect of valence on confidence can be observed in the ab-
sence of an effect on RT. Second, the slope quantifies
how the effect of valence on confidence linearly depends
on the valence-induced slowing of RT. Both at the

Table 2. Repeated measures ANOVA results reported separately for choice-relevant behavioral measures

Exp.1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Performance val. F(1,17), [η2] (P-val) 1.04, [0.01]
(0.323)

0.00, [0.00]
(0.971)

0.40, [0.00]
(0.538)

0.01, [0.00]
(0.912)

0.33, [0.00]
(0.571)

0.37, [0.04]
(0.553)

inf. F(1,17), [η2] (P-val) 4.28, [0.04]
(0.054)~

18.64, [0.15]
(0.001)***

5.56, [0.04]
(0.031)*

3.26, [0.06]
(0.089)~

10.17, [0.07]
(0.005)**

2.19, [0.02]
(0.157)

val×inf F(1,17), [η2] (P-val) 1.06, [0.01]
(0.319)

0.77, [0.01]
(0.393)

0.06, [0.00]
(0.816)

4.36, [0.04]
(0.052)~

1.04, [0.01]
(0.326)

3.57, [0.02]
(0.075)~

Confidence val. F(1,17), [η2] (P-val) 33.11, [0.27]
(<0.001)***

15.43, [0.19]
(0.001)**

12.18, [0.03]
(0.003)**

19.14, [0.07]
(<0.001)***

16.71, [0.15]
(<0.001)***

26.71, [0.12]
(<0.001)***

inf. F(1,17), [η2] (P-val) 2.00, [0.00]
(0.175)

4.92, [0.02]
(0.040)*

2.28, [0.02]
(0.149)

3.21, [0.01]
(0.091)~

11.07, [0.01]
(0.004)**

0.11, [0.00]
(0.743)

val×inf F(1,17), [η2] (P-val) 7.58, [0.02]
(0.014)*

4.25, [0.01]
(0.055)~

1.61, [0.01]
(0.222)

4.46, [0.01]
(0.050)~

7.87, [0.02]
(0.012)*

5.16, [0.01]
(0.036)*

RT val. F(1,17), [η2] (P-val) 13.25, [0.03]
(0.002)**

13.15, [0.08]
(0.002)**

12.47, [0.01]
(0.003)**

11.23, [0.01]
(0.004)**

1.97, [0.00]
(0.178)

15.56, [0.02]
(0.001)**

inf. F(1,17), [η2] (P-val) 0.12, [0.00]
(0.733)

7.64, [0.01]
(0.013)*

1.82, [0.00]
(0.195)

0.31, [0.00]
(0.586)

0.09, [0.00]
(0.766)

3.60, [0.00]
(0.074)~

val×inf F(1,17), [η2] (P-val) 4.94, [0.01]
(0.040)*

0.36, [0.00]
(0.558)

1.32, [0.00]
(0.266)

2.32, [0.00]
(0.146)

0.70, [0.00]
(0.414)

2.02, [0.00]
(0.173)

val, valence; inf, information

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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population level (i.e., combining data from all 6 experi-
ments) and in each individual study, the intercepts of
those regressions were estimated to be significantly posi-
tive (all Ps < 0.05; Fig. 4A-B; Table 7). This indicates
that valence-induced changes on confidence are detectable
when valence induced-changes on RT are absent. Note
that at the population level, the slope of the regression
also was significantly negative (β = −0.02 ± 0.01, t(106)
= −3.75, P < 0.001), indicating that, compared with the
gain context, the more participants were slowed down by
the loss context, the less confident they were in their re-
sponse. Therefore, the valence-induced motor and confi-
dence biases are only partially dissociable.

Discussion

The present work investigated the relationship between
valence-induced biases affecting two different behavioral out-
puts: response time and confidence. We confirmed, in six
variations of a simple probabilistic reinforcement-learning
task, that learning to avoid punishment increased participants’
response time (RT) and decreased their confidence in their
choices, without affecting their actual performance
(Fontanesi et al., 2019 ; Lebreton et al., 2019). The valence-
induced bias on RT is currently interpreted as a manifestation
of a motor—or instrumental—Pavlovian bias (Boureau and
Dayan, 2011; Guitart-Masip et al., 2012). In the associative

Fig. 2 Behavioral results. Effects of the main manipulations (left:
valence; middle: information; right: interaction) on relevant measures of
choice-relevant behavior (top: performance; middle: confidence; bottom:
response times). Analyses are independently performed in the six differ-
ent experiments using repeated-measures ANOVAs. Empty dots with

colored edges represent individual data points across different experi-
ments; filled diamonds and error-bars represent sample mean ± SEM.
The horizontal bar indicates a one-way ANOVA testing the effect of
experiment on each manipulation (see supplementary materials,
Figure S. 3 for details). ~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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Table 3. Estimated coefficients from generalized linear mixed-effect models on performance across experiments

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Val. β ± SE
t-val
(P-val)

0.40 ± 0.21
1.86
(0.063)~

0.08 ± 0.18
0.32
(0.748)

0.16 ± 0.27
0.58
(0.561)

0.15 ± 0.19
0.78
(0.43)

-0.08 ± 0.17
-0.50
(0.620)

0.12 ± 0.15
0.76
(0.449)

Inf. β ± SE
t-val
(P-val)

0.31 ± 0.18
1.74
(0.081)~

0.72 ± 0.16
4.59
(<.001)***

0.52 ± 0.22
2.40
(0.016)*

0.63 ± 0.30
2.10
(0.036)*

0.51 ± 0.18
2.92
(0.004)**

0.22 ± 0.16
1.41
(0.158)

Val x Inf β ± SE
t-val
(P-val)

0.10 ± 0.20
0.47
(0.638)

0.20 ± 0.21
0.92
(0.356)

0.16 ± 0.19
0.83
(0.405)

0.36 ± 0.23
1.56
(0.118)

0.04 ± 0.18
0.23
(0.814)

0.25 ± 0.12
2.13
(0.034)*

Fix (s) β ± SE
t-val
(P-val)

- - - 0.18 ± 0.35
-0.51
(0.611)

-0.28 ± 0.28
-0.99
(0.322)

-

Stim (s) β ± SE
t-val
(P-val)

- - - - 0.03 ± 0.07
0.37
(0.713)

-

Mask (s) β ± SE
t-val
(P-val)

- - - 0.14 ± 0.29
-0.47
(0.637)

0.17 ± 0.28
0.57
(0.567)

-

Sess. β ± SE
t-val
(P-val)

0.34 ± 0.14
2.40
(0.016)*

0.78 ± 0.15
5.08
(<0.001)***

0.58 ± 0.14
4.17
(<0.001)***

0.46 ± 0.15
3.00
(0.003)**

0.30 ± 0.10
2.89
(0.004)**

0.09 ± 0.07
1.32
(0.186)

β, estimated regression coefficients for fixed effects; SE, estimated standard error of the regression coefficients; Val, valence; Inf, information; Fix.,
fixation duration; Stim., stimulus display duration; Sess, session number.

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001

Table 4. Estimated coefficients from generalized linear mixed-effect models on confidence across experiments

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Val. β ± SE
t-val
(P-val)

8.85 ± 1.51
5.86
(<0.001)***

8.29 ± 2.05
4.04
(<0.001)***

4.23 ± 1.17
3.59
(<0.001)***

5.34 ± 1.19
4.50
(<0.001)***

7.19 ± 2.27
3.16
(0.002)**

7.05 ± 1.32
5.34
(<.0001) ***

Inf. β ± SE
t-val
(P-val)

0.76 ± 0.51
1.49
(0.135)

2.75 ± 1.20
2.28
(0.022)*

0.95 ± 0.61
1.55
(0.120)

1.55 ± 0.85
1.82
(0.069)~

1.59 ± 0.59
2.69
(<0.001)***

0.27 ± 0.78
0.35
(0.726)

Val x Inf β ± SE
t-val
(P-val)

-2.16 ± 0.76
-2.85
(0.004)**

-1.38 ± 0.65
-2.12
(0.034)*

-0.90 ± 0.69
-1.31
(0.192)

-1.51 ± 0.72
-2.10
(0.036)*

-2.67 ± 0.95
-2.81
(0.004)**

-2.05 ± 0.88
-2.33
(0.019)*

Fix (s) β ± SE
t-val
(P-val)

- - - -1.11 ± 1.40
-0.79
(0.428)

0.49 ± 1.43
0.34
(0.734)

-

Stim (s) β ± SE
t-val
(P-val)

- - - - 0.21 ± 0.39
0.53
(0.596)

-

Mask (s) β ± SE
t-val
(P-val)

- - - 0.27 ± 1.48
-0.18
(0.854)

-0.40 ± 1.32
-0.30
(0.761)

-

Sess. β ± SE
t-val
(P-val)

2.99 ± 0.98
3.05
(0.002)**

2.84 ± 0.68
4.19
(<0.001)***

1.75 ± 0.73
2.41
(0.016)*

1.96 ± 0.89
2.23
(0.026)*

1.20 ± 0.80
1.50
(0.133)

-0.49 ± 1.10
-0.45
(0.653)

Β, estimated regression coefficients for fixed effects; SE, estimated standard error of the regression coefficients; Val, valence; Inf, information; Fix.,
fixation duration; Stim., stimulus display duration; Sess, session number

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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learning literature, similar Pavlovian effects—whereby the
presentation of reward-associated stimuli can motivate behav-
iors that have produced rewards in the past—have been de-
scribed (Mahlberg et al., 2019). One of the most studied effect
is the Pavolvian-Instrumental Transfer (PIT), which is defined
as an increased vigor in instrumentally trained responses when
these are made in the context of Pavlovian, or reward-associ-
ated, cues (Cartoni et al., 2016; Holmes et al., 2010).While we
did not employ standard PIT procedures in the current studies,
which would involve separate Pavlovian and transfer phases
(Colwill and Rescorla, 1988; Rescorla and Solomon, 1967;
Watson et al., 2014), our findings nonetheless parallel those
from Pavlovian-Instrumental Transfer studies, by showing
faster reaction times in the context of reward, but not punish-
ment cues.

The valence-induced decrease in confidence has been de-
scribed as a value-to-confidence contamination, potentially
generated by a mechanisms of affect-as-information
(Lebreton et al., 2018; Schwarz and Clore, 1983). Note that
some authors have warned about possible misidentifications
between a true confidence bias and a change in metacognitive
sensitivity (Fleming and Lau, 2014). Yet, because we previ-
ously established in a perceptual task that the outcome valence
manipulation specifically impacts the confidence bias and not
metacognitive sensitivity (Lebreton et al., 2018), we assume
that the same experimental manipulation produces similar ef-
fects in a reinforcement-learning task.

One of the motivations behind the present study was to rule
out a potential alternative explanation of the observed de-
crease in confidence: participants could derive confidence es-
timates by monitoring changes in their own response times.
Indeed, because it has been suggested that humans can infer
confidence levels from observing their RT (Desender et al.,
2017; Kiani et al., 2014), the valence-induced bias on confi-
dence could be spuriously driven by a valence-induced motor
bias operating at the level of motor initiation (Boureau and
Dayan, 2011; Guitart-Masip et al., 2012). As such, valence-
induced confidence biases would thenmerely reflect a second-
ary effect of valence mediated by response time slowing, and
not a primary meta-cognitive bias. Crucially, this possibility is
not ruled out by previous studies, where effects of affective
states on confidence judgments in perceptual or cognitive
tasks typically lacked control over RT (Giardini et al., 2008;
Koellinger and Treffers, 2015; Massoni, 2014, but see
Lebreton et al., 2018). We address this issue in the current
set of experiments by dissociating decisions from motor map-
ping, thereby partially removing the association between RT
and confidence.

We analyzed six datasets composed of two published
datasets (Exp. 1-2) and four new experiments (Exp. 3-6).
Over those six experimental datasets, the first noticeable result
is that we systematically replicated previous instrumental
learning results using the same paradigm with very consistent
effect sizes (Palminteri et al., 2015, 2016): participants learn

Table 5. Estimated coefficients from generalized linear mixed-effect models on response times across experiments

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Val. β ± SE
t-val
(P-val)

-151.12 ± 40.37
-3.74
(<0.001)***

-115.63 ± 30.96
-3.73
(<0.001)***

-15.31 ± 4.33
-3.53
(<0.001)***

-13.49 ± 4.97
-2.71
(0.007)**

-3.23 ± 3.44
-0.94
(0.349)

-35.19 ± 8.60
-4.10
(<0.001)***

Inf. β ± SE
t-val
(P-val)

-6.57 ± 19.58
-0.34
(0.737)

-44.37 ± 15.75
-2.82
(0.005)**

5.81 ± 4.13
1.41
(0.160)

-2.81 ± 4.28
-0.65
(0513)

0.80 ± 3.78
-0.21
(0.832)

-8.23 ± 5.11
-1.61
(0.107)

Val x Inf β ± SE
t-val
(P-val)

65.58 ± 28.77
2.28
(0.023)*

10.59 ± 18.88
0.56
(0.575)

3.75 ± 3.25
1.15
(0.249)

3.67 ± 4.19
0.88
(0.381)

-3.04 ± 3.85
-0.79
(0.430)

8.35 ± 5.43
1.54
(0.124)

Fix (s) β ± SE
t-val
(P-val)

- - - -2.37 ± 16.13
-0.15
(0.883)

18.56 ± 12.77
1.45
(0.146)

-

Stim (s) β ± SE
t-val
(P-val)

- - - - -13.12 ± 4.00
-3.28
(<0.001)***

-

Mask(s) β ± SE
t-val
(P-val)

- - - -68.34 ± 16.35
-4.18
(<0.001)***

-54.20 ± 14.5
-3.73
(<0.001)***

-

Sess. β ± SE
t-val
(P-val)

-152.43 ± 33.63
-4.53
(<0.001)***

-146.28 ± 26.13
-5.60
(<0.001)***

-26.93 ± 6.14
-4.38
(<0.001)***

-32.55 ± 9.51
-3.42
(<0.001)***

-27.57 ± 5.64
-4.79
(<0.001)***

-6.39 ± 8.34
-0.77
(0.443)

β, estimated regression coefficients for fixed effects; SE, estimated standard error of the regression coefficients; Val, valence; Inf, information; Fix.,
fixation duration; Stim., stimulus display duration; Sess, session number

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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equally well to seek reward and avoid punishment, and learn-
ing performance benefits from complete information (i.e.,
feedback about the counterfactual outcome). The reliability
of the results extended beyond choice behavior as confidence
and RT were, respectively, lower and slower in punishment
contexts compared with reward contexts, as previously report-
ed (Fontanesi et al. 2019; Lebreton et al., 2019), thus
confirming the robustness of the valence bias.

The second important result is that the slowing down of
RTs in loss contexts is extremely resilient, as it was still ob-
served when the mapping between motor response and option
selection was dissociated by our experimental design (Exp. 3-
4) and when significant time pressure was applied on the
decision (Exp. 6) – albeit with significantly lower effect sizes.
This result speaks to the strength and the pervasiveness of the
valence-induced bias operating at the motor level (Boureau
and Dayan, 2011; Guitart-Masip et al., 2012).

Third, and importantly, we still observed a significant va-
lence effect on confidence when the valence effects on RT

were dramatically reduced (Exp. 3, 4, and 6) or absent (Exp.
5), indicating that the lower confidence observed in the loss-
avoidance context is—at least partly—dissociable from the
concomitant slowing down of motor responses. This was con-
firmed by additional evidence from inter-individual difference
analyses, showing that in all six experiments, a theoretical
subject exhibiting no valence-induced bias in RT would still
exhibit a valence-induced bias in confidence. Note that the
absence of a significant motor bias observed in Exp. 5 could
be caused by the successful changes in the experimental setup,
that were implemented with this specific goal in mind. Yet, it
also could be a false negative: the experimental setup could
still be inefficient to cancel the motor bias, but the sampled
participants just happened—by chance—to not exhibit the
motor bias. Regardless of the reason for this null-effect, the
important point is that in this sample—where we failed to
detect a significant effect of valence on reaction times—
there was still an effect of valence on confidence.
Altogether, these results suggests that it is unlikely that the

Fig. 3 Generalized linear mixed-effects models. Estimated standardized
regression coefficients (t-values) from generalized linear mixed-effects
(GLME) models, fitted in the different experiments. Top: logistic
GLME with performance as the dependent variable. Middle: linear

GLME with confidence as the dependent variable. Bottom: linear
GLME with RT as the dependent variable; Shaded area represent area
where coefficients are not significantly different from 0 (abs(t-value) <
1.95; P > 0.05). ~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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valence-induced bias on confidence reported in human
reinforcement-learning (Lebreton et al., 2019) is a mere con-
sequence of a response time slowing caused by an aversive
motor Pavlovian bias. Our results are consistent with recent
findings (Dotan et al., 2018), challenging the notion that
humans infer confidence levels purely from observing their

own response times, and suggesting that decision reaction
times are a consequence rather than a cause of the feeling of
confidence (Desender et al., 2017; Kiani et al., 2014). It is
worth noting that in most studies, decision-time (i.e., when
participants reach a decision) and response times (when par-
ticipants indicate their choice) are not experimentally

Table 6. Estimated coefficients from generalized linear mixed-effect models on confidence, controlling for reaction times, across experiments

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Val. β ± SE
t-val
(P-val)

158.94 ± 28.40
5.60
(<.001)***

7.12 ± 1.97
3.61
(<.001)***

3.99 ± 1.18
3.39
(<.001)***

5.16 ± 1.17
4.41
(<.001)***

7.11 ± 1.70
4.19
(<.001)***

6.29 ± 1.28
4.91
(<.001)***

Inf. β ± SE
t-val
(P-val)

10.47 ± 9.22
1.14
(0.256)

2.29 ± 1.15
1.99
(0.046)*

0.99 ± 0.58
1.73
(0.084)~

1.46 ± 0.84
1.74
(0.081)~

1.67 ± 0.51
3.31
(<.001)***

0.13 ± 0.82
0.16
(0.875)

Val x Inf β ± SE
t-val
(P-val)

-31.32 ± 13.34
-2.35
(0.019)*

-1.09 ± 0.63
-1.74
(0.082)~

-0.79 ± 0.71
-1.11
(0.27)

-1.37 ± 0.73
-1.86
(0.062)~

2.45 ± 0.81
-3.02
(0.003)**

-2.06 ± 0.88
-2.34
(0.019)*

RT β ± SE
t-val
(P-val)

-0.08 ± 0.028
-3.01
(0.002)**

-0.01 ± 0.00
-8.68
(<.001)***

-0.02 ± 0.00
-8.21
(<0.001)***

-0.02 ± 0.00
-4.65
(<.001)***

-0.01 ± 0.00
-4.32
(<.001)***

-0.01 ± 0.00
-2.20
(0.028)*

Fix (s) β ± SE
t-val
(P-val)

- - - -0.00 ± 0.00
-0.62
(0.532)

0.00 ± 0.00
0.58
(0.561)

-

Stim (s) β ± SE
t-val
(P-val)

- - - - -0.00 ± 0.00
-0.02
(0.985)

-

Mask (s) β ± SE
t-val
(P-val)

- - - -0.00 ± 0.00
-1.11
(0.267)

-0.00 ± 0.00
-0.78
(0.436)

-

Sess. β ± SE
t-val
(P-val)

41.97 ± 19.46
2.16
(0.031)*

0.71 ± 0.84
0.85
(0.396)

0.96 ± 0.70
1.37
(0.172)

1.41 ± 0.920
1.53
(0.125)

0.86 ± 0.78
1.10
(0.273)

-0.87 ± 1.14
-0.77
(0.443)

β, estimated regression coefficients for fixed effects; SE, estimated standard error of the regression coefficients; Val, valence; Inf, information; Fix.,
fixation duration; Stim., stimulus display duration; Sess, session number

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001

Table 7. Estimated coefficients from inter-individual robust regressions

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 All

Intercept β ± SE
t-val
(P-val)

8.02 ± 2.15
3.72
(0.002)**

2.94 ± 1.29
2.27
(0.037)*

2.16 ± 0.95
2.27
(0.038)*

3.54 ± 1.37
2.58
(0.020)*

6.76 ± 1.81
3.73
(0.002)**

3.59 ± 1.95
2.41
(0.028)*

5.62 ± 0.69
8.18
(<0.001)***

Slope β ± SE
t-val
(P-val)

-0.003
±0.009

-0.27
(0.793)

-0.03 ± 0.01
-3.55
(0.003)**

-0.02 ± 0.04
-0.46
(0.662)

-0.06 ± 0.06
-0.97
(0.35)

0.17 ± 0.18
0.81
(0.368)

-0.10 ± 0.03
-3.35
(0.004)**

-0.02 ± 0.01
-3.75
(<0.001)***

For each individual, we estimated the net effect of valence on RT and confidence, by computing the averaged difference of these behavioral measures in
the gain versus loss contexts. For analyses restricted to a single experiment, we used robust regressions to decrease the vulnerability of our estimates in
the relatively small samples (n = 18). For the combined analysis (n = 108), simple and robust regressions gave similar results, and we only report the
results of the simple regression

β, estimated regression coefficient; SE, estimated standard error of the regression coefficient

~P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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dissociated and often conflated in the same measure. We de-
layed the mapping between decisions (in the option space) and
action selection (motor space), which resulted in an effective
control over response times. Future studies will investigate
whether participants can keep track of an internal measure of
decision time, which could influence confidence. Likewise,
we cannot pretend that our experimental manipulations re-
moved all valence (Pavlovian) effects on motor responses.
We only managed to modulate one component of our partic-
ipants’ response vigor: the response times (RT).

In our data, we also observed that confidence ratings and
RT are robustly associated regardless of time pressure manip-
ulation. The negative correlation between confidence and RT
was consistently found in over six experiments. This coupling
is consistent with predictions from most sequential-sampling
models (van den Berg et al., 2016; De Martino et al., 2013;
Navajas et al., 2016; Pleskac and Busemeyer, 2007; Ratcliff
and Starns, 2009, 2013; Yu et al., 2015), which posit that
confidence and RT jointly emerge from a single mechanism
of evidence accumulation. Importantly, we still observed ro-
bust correlations between confidence and motor RTs when we
dissociated action selection from the option evaluation.
Therefore, the motor execution of a decision might be more

important than previously thought in sequential-sampling
models of confidence, which mostly focus on decision times.

The replicability and robustness of the valence-induced
confidence bias implies that the manipulations of valence
could prove useful to dissociate fundamental components
of decision-making and metacognitive judgment, such as
objective uncertainty and subjective confidence (Bang and
Fleming, 2018). The dissociation between objective un-
certainty and subjective confidence is anticipated by
post-decisional and second-order models of confidence
(Fleming and Daw, 2017; Pleskac and Busemeyer,
2007), which postulate that confidence is formed after
the decision and thereby might be influenced by other
internal or external variables (Moran et al., 2015;
Navajas et al., 2016; Yu et al., 2015). It is worth noting
that our results do not rule out the possibility that RT is
used to guide metacognitive judgment of confidence be-
fore and after the decision. Actually, the fact that partic-
ipants who exhibit the strongest valence-induced motor
bias are also the ones that exhibit the strongest confidence
bias (significant negative slope(s) in Fig. 4A-B and
Table 3) indicates that their reaction times and confidence
are linked. Observing one’s RTs could therefore be one of

Fig. 4 Assessing the link between the effects of valence on confidence
and response times. (A) Inter-individual correlations between the effects
of valence on confidence (Y-axis) and response times (X-axis) across
experiments. Dots represent data points from individual participants.
Thick lines represent the mean ± 95%CI of the effects of valence on
confidence (vertical lines) and response times (horizontal lines).
Experiments are indicated by the dot edge and line color. The black
shaded area represents the 95%CI of the inter-individual linear regression.

Note that potential outliers did not bias the regression, given that simple
and robust regressions gave very similar results. (B) Results from inter-
individual regressions of the valence-induced RT slowing on the valence-
induced confidence difference across different experiments. Top: estimat-
ed intercepts of the regressions. Bottom: estimated slopes of the regres-
sions. Diamonds and error-bars represent the estimated regression coef-
ficients (β) and their standard error. *P < 0.05; **P < 0.01; ***P < 0.001
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the factors that influences confidence after the decision
was made, as posited in second-order models.

In a previous study (Fontanesi et al., 2019), we ana-
lyzed the effects of valence on RT, on a different dataset
collected with a similar experimental design, although
omitting confidence judgments. There, using an approach
combining reinforcement-learning and decision-diffusion
modelling, we reported that valence influences two criti-
cal parameters of the response time model: the nondeci-
sion-time, which typically represents perceptual and mo-
tor processes, and the decision threshold, which indexes
response cautiousness. We speculate that this distinction
is relevant to interpret the results of the present report. We
propose that the portion of the valence-induced response
time slowing that we were able to cancel through
response-mapping manipulation could be linked to the
nondecision-time modulation; on the other hand, the re-
sidual irreducible valence-induced response time slowing
could be linked to the increased response cautiousness.
Yet, given the disruption of the response mapping present
in most experiments in the current study, the combined
reinforcement-learning and decision-diffusion modelling
approach cannot be applied to the present data to test this
hypothesis. Further experiments are therefore needed to
refine the computational description of valence-induced
biases in reinforcement-learning, and their consequences
on performance, confidence and response times.

Finally, the question arises to what extent incentive-related,
confidence, and Pavlovian and instrumental processes, which
all influence behavior in the current study, are supported by
dissociable, or overlapping brain systems. Incentives are typ-
ically processed by the brain reward system, of which the
ventral striatum (VS) and ventromedial prefrontal cortex
(vmPFC) are key structures (Bartra et al., 2013; Haber and
Knutson, 2009; Pessoa and Engelmann, 2010). The anterior
insula also is often involved in incentive processing and seems
to preferentially code negative incentive value (Bartra et al.,
2013; Engelmann et al., 2015, 2017; Palminteri et al., 2012).
This set of neural structures is also involved in the computa-
tion of positive (vmPFC, VS) and negative (anterior insula)
reward prediction errors (RPE)s. RPEs are an essential part of
reinforcement learning models of Pavlovian and instrumental
learning, and reflect the difference in expected and observed
rewards (or punishments), which is used to update future de-
cision value estimates. Unsurprisingly, brain regions associat-
ed with Pavlovian Instrumental Transfer also involve these
regions associated with processing predominantly appetitive
stimuli, i.e., the ventral striatum and ventral region of the
prefrontal cortex, but also regions associated with predomi-
nantly aversive stimuli, i.e., the amygdala (Cartoni et al.,
2016; Holmes et al., 2010; Talmi et al., 2008). Interestingly,
recent neuroimaging studies have shown that neural signals in
the vmPFC correlate with confidence judgments in a variety

of tasks (De Martino et al., 2013; Lebreton et al., 2015;
Shapiro and Grafton, 2020). Taken together, there is signifi-
cant overlap in the neural systems that support incentive pro-
cessing (VS, vmPFC) and appetitive Pavlovian and instru-
mental learning (VS), on the one hand, and confidence
(vmPFC) on the other. Note further that ventral striatum is
situated in the basal ganglia and has direct projections with
vmPFC (Haber andKnutson, 2009) and can therefore function
as an interface between motor and affective/motivational sys-
tems. Regions encoding incentives and learning in the
aversive domain, however, do not seem to share the same
direct interconnectivity with vmPFC and motor regions
(Cerliani et al., 2012). The concurrent representation of key
cognitive processes in subregions of the reward system, to-
gether with its connectivity profile, make it a good candidate
to explain the valence-induced motor and confidence biases
observed in the current study. Note, however, that these are
merely neuroanatomical hypotheses based on integrating re-
sults from related literatures on reward, reinforcement learn-
ing, and PIT. It is therefore essential that future neuroimaging
research identifies the underlying neurobiological basis of the
valence-induced motor and confidence biases that we
demonstrated.
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