606 research outputs found

    Spectroscopic Behavior of Composite, Black Thermal Paint, Solar Cell, and Multi-layered Insulation Materials in a GEO Simulated Environment

    Get PDF
    Materials currently populating Earth orbital regimes can be distinguished by comparing remote observational data to that of optical material measurements obtained in the laboratory. Experimentation for this research primarily involved the acquisition of spectroscopic measurements on materials of interest to the telescopic observational community for enhanced space situational awareness. Common spacecraft materials worthy of preeminent analysis for this investigation include a carbon-carbon (c-c) matrix composite, various black thermal paints, a GPS solar cell and three different cover glass components. These materials were subjected to a simulated geosynchronous Earth orbit (GEO) space environment with the intent of observing material optical property behavior over quantitative exposure time. The aforementioned materials have been measured in their pristine and GEO simulated exposed conditions. A reflectance spectrometer and a bi-directional reflectance distribution function (BRDF) optical system have been operated to perform material characterization, optical property analysis, and to further compare such data to telescopic observational data acquired on equal materials

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Mutations in the CDSN gene cause peeling skin disease and hypotrichosis simplex of the scalp

    Get PDF
    Peeling skin disease is a rare genodermatosis characterized by superficial exfoliation or peeling of the skin. Peeling skin disease is caused by biallelic mutations in CDSN as an autosomal recessive trait. Monoallelic mutations in CDSN have also been described in an autosomal dominant inherited genodermatosis: hypotrichosis simplex of the scalp. This disease is characterized by progressive hair loss of the scalp with onset after early childhood. Clinical data were obtained from a patient with lifelong generalized skin peeling and both his parents. The patient's parents did not suffer from skin peeling, but the mother had a history of thin scalp hair since early childhood. Mutation analysis in the patient showed compound heterozygous mutations in exon 2 of CDSN, a nonsense mutation c.598C>T (p.[Gln200*]), previously associated with hypotrichosis simplex of the scalp, and a frame-shift mutation c.164_167dup (p.[Thr57Profs*6]), previously described in peeling skin disease. The p.(Gln200*) mutation was also found in the mother of the proband. Our study strengthens the previously established link between mutations in CDSN to peeling skin disease and hypotrichosis simplex of the scalp

    Inception of a global atlas of sea levels since the Last Glacial Maximum

    Get PDF
    Determining the rates, mechanisms, and geographic variability of relative sea-level (RSL) change following the Last Glacial Maximum (LGM) provides insight into the sensitivity of ice sheets to climate change, the response of the solid Earth and gravity field to ice-mass redistribution, and constrains statistical and physical models used to project future sea-level rise. To do so in a scientifically robust way requires standardized datasets that enable broad spatial comparisons that minimize bias. As part of a larger goal to develop a unified, spatially-comprehensive post-LGM global RSL database, in this special issue we provide a standardized global synthesis of regional RSL data that resulted from the first ‘Geographic variability of HOLocene relative SEA level (HOLSEA)’ meetings in Mt Hood, Oregon (2016) and St Lucia, South Africa (2017). The HOLSEA meetings brought together sea-level researchers to agree upon a consistent protocol to standardize, interpret, and incorporate realistic uncertainties of RSL data. This special issue provides RSL data from ten geographical regions including new databases from Atlantic Europe and the Russian Arctic and revised/expanded databases from Atlantic Canada, the British Isles, the Netherlands, the western Mediterranean, the Adriatic, Israel, Peninsular Malaysia, Southeast Asia, and the Indian Ocean. In total, the database derived from this special issue includes 5634 (5290 validated) index (n = 3202) and limiting points (n = 2088) that span from ∼20,000 years ago to present. Progress in improving the standardization of sea-level databases has also been accompanied by advancements in statistical and analytical methods used to infer spatial patterns and rates of RSL change from geological data that have a spatially and temporally sparse distribution and geochronological and elevational uncertainties. This special issue marks the inception of a unified, spatially-comprehensive post-LGM global RSL database

    Climate related sea-level variations over the past two millennia

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 11017-11022, doi:10.1073/pnas.1015619108.We present new sea-level reconstructions for the past 2100 years based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. It then increased for 400 years at a rate of 0.6 mm/yr, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/yr, representing the steepest, century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semi-empirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.Research was supported by NSF grants (EAR-0951686) to BPH and JPD. ACK thanks a NOSAMS internship, UPenn paleontology stipend and grants from GSA and NAMS. North Carolina sea-level research was funded by NOAA (NA05NOS4781182), USGS (02ERAG0044) and NSF (EAR-0717364) grants to BPH with S. Culver and R. Corbett (East Carolina University). JPD (EAR-0309129) and MEM (ATM-0542356) acknowledge NSF support. MV acknowledges Academy of Finland Project 123113 and COST Action ES0701

    An improved method for high-throughput quantification of autophagy in mammalian cells

    Get PDF
    Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays
    • …
    corecore