
Chapman University
Chapman University Digital Commons
Biology, Chemistry, and Environmental Sciences
Faculty Articles and Research Biology, Chemistry, and Environmental Sciences

6-17-2010

Generation of Tunable Narrow Bandwidth
Nanosecond Pulses in the Deep Ultraviolet for
Efficient Optical Pumping and High Resolution
Spectroscopy
Luis Velarde
University of California, Santa Barbara

Daniel P. Engelhart
University of California, Santa Barbara

Daniel Matsiev
University of California, Santa Barbara

Jerry L. LaRue
Chapman University, larue@chapman.edu

Daniel J. Auerbach
University of California, Santa Barbara

See next page for additional authors

Follow this and additional works at: http://digitalcommons.chapman.edu/sees_articles

This Article is brought to you for free and open access by the Biology, Chemistry, and Environmental Sciences at Chapman University Digital
Commons. It has been accepted for inclusion in Biology, Chemistry, and Environmental Sciences Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
L. Verlarde, P. Engelhart, D. Matsiev, J. LaRue, D. J. Auerbach, A. M. Wodtke, Generation of tunable narrow bandwidth nanosecond
pulses in the deep-ultraviolet for efficient optical pumping and high resolution spectroscopy, Rev. Sci. Instrum. 2010, 81, 063106, DOI:
10.1063/1.3436973

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chapman University Digital Commons

https://core.ac.uk/display/215750712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/earthenvironment?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the
Deep Ultraviolet for Efficient Optical Pumping and High Resolution
Spectroscopy

Comments
Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any
other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in

L. Verlarde, P. Engelhart, D. Matsiev, J. LaRue, D. J. Auerbach, A. M. Wodtke, Generation of tunable narrow
bandwidth nanosecond pulses in the deep-ultraviolet for efficient optical pumping and high resolution
spectroscopy, Rev. Sci. Instrum. 2010, 81, 063106, DOI: 10.1063/1.3436973

and may be found at DOI: 10.1063/1.3436973.

Copyright
American Institute of Physics

Authors
Luis Velarde, Daniel P. Engelhart, Daniel Matsiev, Jerry L. LaRue, Daniel J. Auerbach, and Alec M. Wodtke

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/sees_articles/121

http://dx.doi.org/10.1063/1.3436973
http://digitalcommons.chapman.edu/sees_articles/121?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages


Generation of tunable narrow bandwidth nanosecond pulses
in the deep ultraviolet for efficient optical pumping
and high resolution spectroscopy

Luis Velarde,1 Daniel P. Engelhart,1 Daniel Matsiev,1 Jerry LaRue,1 Daniel J. Auerbach,1,2

and Alec M. Wodtke1,a�

1Department of Chemistry and Biochemistry, University of California, Santa Barbara,
California 93106, USA
2Gas Reaction Technologies, 861 Ward Drive, Santa Barbara, California 93111, USA

�Received 22 April 2010; accepted 6 May 2010; published online 17 June 2010�

Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet �UV�
region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR
light originating from a home-built injection-seeded ring cavity KTiOPO4 optical parametric
oscillator �OPO� and the fourth harmonic beam of an injection-seeded Nd:YAG laser used
simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable
from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than
0.01 cm−1. We describe how the approach shown in this paper can be extended to wavelengths
shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ��40% overall
energy conversion� and superior beam quality required for highly efficient downstream mixing
where sum frequencies are generated in the UV. The frequency stability of the system is excellent,
making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well
as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively,
in supersonic pulsed molecular beams of nitric oxide. © 2010 American Institute of Physics.
�doi:10.1063/1.3436973�

I. INTRODUCTION

An all-solid-state tunable source of coherent ultraviolet
�UV� radiation with high peak power and narrow bandwidth
is highly desirable for a number of spectroscopic and photo-
chemical applications.1,2 Such a source would be especially
attractive when exhibiting robust long-lived performance,
overall simplicity, and wide wavelength tunability with Fou-
rier transform �FT� limited bandwidth. For pulses of nano-
second duration, the FT limit allows exceptionally narrow
bandwidths to be obtained. While achieving a narrow line-
width is essential to high-resolution laser spectroscopy, high
spectral brightness with long-term wavelength stability is
needed for many molecular optical pumping processes, par-
ticularly in demanding spin-forbidden transitions to meta-
stable states.3–7 The use of tunable infrared �IR� and visible
lasers to generate UV radiation by means of nonlinear fre-
quency conversion methods remains the standard approach
to producing tunable UV light. Dye lasers have been used for
decades as the primary source of tunable pulsed visible and
near-IR light due to their high lasing efficiency and broad
tuning ranges. For FT-limited pulse generation, pulse-
amplified ring dye lasers have been commonly used due to
their ability to operate on a single longitudinal mode �SLM�
with high powers.8–12 To overcome the disadvantages of dye
laser systems, such as poor beam quality, short-lived dye
solutions, amplified spontaneous emission, and toxic chemi-

cals, pulsed all-solid-state tunable UV sources have been
proposed and developed in which the FT limit is attained via
injection seeding of, for example, Ti:sapphire amplifiers
�Refs. 13–15 and references therein� and optical parametric
oscillators �OPOs� �e.g., Refs. 1, 16, and 17�. Other methods
involving intracavity elements such as etalons �e.g., Ref. 18�
and grazing-incidence gratings19,20 have also been used. Un-
fortunately, all of these narrow-band UV systems have a rela-
tively high degree of complexity or rather low output pow-
ers. Intracavity sum frequency mixing has been proposed by
Fix and Ehret,21 where conversion efficiency was reported to
be twice as much as external mixing. Armstrong and Smith
performed intracavity mixing in an injection-seeded OPO.
They postulated that absorption heating in the �-barium bo-
rate �BBO� sum frequency generation �SFG� crystal caused
some signal wavefront distortion after repeatedly passing
through the heated BBO, reducing the beam quality and
causing hot spots in the UV output.17 Implementing intrac-
avity SFG in the deep UV is further complicated by absorp-
tion in transmissive outcoupling and by the high demands on
the optical coatings of the resonator mirrors requiring
multiple wavelength optimization �i.e., pump, signal, idler,
and UV�.

Inspired by recent developments in high performance
injection-seeded nanosecond OPOs1,2,16,22–30 combined with
remarkable improvements in the tunability and long-term
stability of diode lasers, our approach uses a mid-IR OPO,
where FT-limited pulses can be readily obtained by injection
seeding with a low power SLM diode laser. Subsequently,a�Electronic mail: wodtke@chem.ucsb.edu.
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frequency upconversion is accomplished by mixing the
mid-IR OPO output with the fourth harmonic of an injection-
seeded Nd:yttrium aluminum garnet �YAG� laser, which is
concurrently used to pump the OPO with the residual second
harmonic.

The general design of the OPO is based on the recent
work of Mahnke et al.,29 where an IR light source for atmo-
spheric remote sensing was demonstrated. In this work we
introduce a number of refinements and simplifications to the
Mahnke design to function as a spectroscopic tool and dem-
onstrate operation in the deep UV. To stabilize the OPO cav-
ity length and lock it to the diode laser, a new simplified
implementation of the intensity-dip locking method31 was
developed using merely a photodiode �PD� and a low-cost
general purpose data acquisition �DAQ� card as discussed in
Sec. II C.

A significant increase in the efficiency of the sum fre-
quency mixing process is observed upon injection seeding of
the OPO, demonstrating one of the advantages of the im-
proved beam properties of the seeded near-IR source. With
our current setup, the 875–940 nm FT-limited tuning range
of the OPO �limited by the seed laser� generates narrow-band
UV pulses in the 204–207 nm range after the SFG stage. The
linewidth of the deep-UV radiation generated by this laser
system is determined by laser-induced fluorescence �LIF�
spectroscopy of nitric oxide. We also demonstrate the utility
of the light source in optical pumping taking advantage of its
excellent long term wavelength stability.

II. EXPERIMENTAL SETUP

A. Injection-seeded OPO

The optical layout of the UV light source is shown in
Fig. 1. The OPO is pumped by the second harmonic �532
nm� of a Q-switched injection-seeded Nd:YAG laser �Spectra
Physics LAB-70-10, flashlamp pumped at a repetition rate of
10 Hz, which provides single-longitudinal and single-
transverse mode output with an approximately flat-topped

transverse intensity profile. Pumping the OPO with 532 nm
light is preferred over a 355 or 266 nm pump not only for the
reason that it facilitates production of near-IR radiation
needed for our SFG scheme, but also because higher energies
are available at 532 nm, and optical components with higher
damage threshold can be readily obtained. This scheme em-
ploying a 532 nm pump pulse provides higher levels of
safety, as the most dangerous laser beam is always visible to
the user. Pulse energies up to 140 mJ are available at 532 nm
when 70 mJ of 266 nm are simultaneously produced. A pulse
duration of 8–9 ns full width at half maximum �FWHM� was
typically observed for the fundamental and �7.5 and �6 ns
for the second and fourth harmonics, respectively. The pump
beam diameter is reduced to 4–5 mm by means of a tele-
scope �Special Optics, Inc.�. Single-mode operation of the
OPO was achieved by means of injection seeding with a cw
single-frequency diode laser tuned to the signal frequency.
An external cavity diode laser �ECDL� provided up to
18 mW of cw SLM light �Toptica Photonics, Inc. DL Pro
895� at the output of a single-mode polarization-maintaining
optical fiber. The ECDL tuning range is 875–940 nm with a
continuous, mode-hop-free, scanning range of approximately
20 GHz. Typically, 2–5 mW were used for injection seeding.
This power allows for the beam diameter of the diode laser
to be expanded to �4.5 mm �Thorlabs, Inc. BE02M-B� or
slightly larger than the pump diameter to allow for maximum
spatial overlap of the carefully collimated beams.

The overall design of the signal-resonant OPO is based
on the previous work of Mahnke et al.29 The optical resona-
tor is built to allow oscillation of the signal wavelength and
consists of a piezoelectrically tuned four-mirror planar ring
cavity. Custom mirrors �Laser Optik, GmbH� are needed for
this cavity as are shown in Fig. 2. A pair of identical nonlin-
ear KTP �KTiOPO4� crystals are placed inside the cavity in a
walkoff compensated configuration.32 The resonator is
formed by mirrors M1 to M4, where M2 is the output cou-
pler �OC� and M3 is placed on a stacked ring piezoelectric

FIG. 1. �Color online� Optical layout
of the injection-seeded OPO and the
frequency locking setup. ECDL
=external cavity diode laser, DAQ
=data acquisition card, PZT
=piezoelectric transducer, BD=beam
dump, OI=optical isolator, APP
=anamorphic prism pair, PD
=photodiode, SMF=single mode fiber,
and LV Amp=low voltage amplifier.
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transducer �PZT� �Piezomechanik, GmbH, HPSt 150/20–
15/12 VS35� to actively stabilize the cavity length. Details of
the stabilization feedback loop are described below in Sec.
II C. The OC is coated for high reflectivity at 532 nm, high
transmission for the idler, and 40%–60% reflectivity in the
wavelength range of the seeder �875–950 nm�. The 532 nm
pump pulse enters the cavity through mirror M1 and exits
through mirror M4 after making a single pass through both
nonlinear crystals. In this design, the idler is dumped be-
tween crystals through mirrors M2 and M4 to prevent a fixed
phase relationship of the OPO beams at the next crystal and
to avoid back conversion.29 The design has the further ad-
vantage that no optical isolator is needed between OPO and
pump source. All mirrors are flat with a 1 in. diameter. Each
arm of the resonator is 4.5 cm long, limited by the size of the
current mirror and crystal mounts. The resulting optical
length of the cavity is approximately 19 cm, with a free
spectral range �FSR� of 1.58 GHz.

The KTP crystals �Newlight Photonics, Inc.� are flux
grown, 10 mm long, with an 8�8 mm2 aperture that has a
protective �P-type� coating33 with reflectivity minimized for
the signal and pump wavelengths ��1%�. Figure 3 shows
angle tuning results from the nonlinear modeling SNLO

program.34 The crystals are cut in the XZ plane ��=0°� with
�=70°, where � is the polar angle measured with respect to
the crystalline Z axis and � is the azimuth angle with respect
to X in the XY plane. Type-II collinear phase matching oc-

curs with an e-polarized signal and o-polarized pump and
idler �o→o+e�. The o-polarization direction in the crystals
is parallel to the Y axis and the e-polarization direction lies
in the XZ plane as shown in Fig. 3. The crystals are oriented

FIG. 2. �Color online� Transmission curves �shown with permission from Laseroptik, GmbH� for the OPO cavity mirrors for p �upper traces�, s �lower traces�,
and unpolarized �middle traces� light, where p indicates polarization parallel and s indicates polarization perpendicular �senkrecht� to the plane in which the
light travels in the cavity. The mirrors are coated for a 45° incidence angle.

FIG. 3. �Color online� Nonlinear properties of KTP crystals cut in the XZ
plane as simulated with the SNLO program �Ref. 34�. The solid lines are the
signal �upper solid� and idler �lower solid� wavelengths for phase-matched
conditions. The scale on the right vertical axis applies to the effective non-
linear coefficient �deff� shown in the dot-dashed line. The shaded area cor-
responds to the tuning capabilities of the ECDL seed laser used in this work.
The phase-matching angle ��� is shown pictorially in the bottom right cor-
ner, where k is the light propagation direction.

063106-3 Velarde et al. Rev. Sci. Instrum. 81, 063106 �2010�
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such that the signal has s polarization with respect to the
cavity mirrors in order to take advantage of the higher tun-
ability range of the coatings for s polarization. This comes
somewhat at the expense of a smaller reflectivity of the mir-
rors for the p-polarized 532 nm pump �99%�. Tuning of the
OPO was accomplished by rotating the crystals around the Y
axis by separate piezomotor-driven rotation stages �Newport
Corp. AG-PR100� while keeping the angle � at 0°. The ac-
ceptance angles for each 1 cm KTP crystal are on the order
of 1.4 and 2.0 mrad for the signal and idler, respectively, as
obtained from simulations performed with the SNLO

software.34

In brief, an optical parametric process consists of a pump
beam �pump which is “split” by a nonlinear process that is the
time reversal of sum frequency generation into a signal
�signal and an idler �idler beam such that �pump=�signal

+�idler and �signal��idler. The electric fields
E��signal� ,E��idler� of the signal and idler waves produced by
the nonlinear polarization P��pump� generated in phase with
the pump electric field E��pump� are coupled by means of the
second-order polarizabilty tensor. For our fixed geometry,
this coupling can be simply described by the scalar relation
P��pump��deffE��signal�E��idler�, where the KTP effective

nonlinear coefficient35 deff=d32 sin � is directly related to the
parametric gain and calculated to be about 	3.6 pm/V for
wavelengths in our tuning range. This is shown in Fig. 3
along with the calculated phase matching curves for para-
metric conversion in 532 nm pumped KTP.34 The signal on
the free-running �unseeded� OPO could be experimentally
tuned around 830–990 nm as measured with a grating spec-
trometer �Ocean Optics, Inc.�. Beyond these limits, the OPO
output becomes severely impaired as a result of the reduced
reflectivity of the OPO cavity mirrors and the walkoff in-
duced by the increased crystal angles.

B. Generation of narrow-band deep-UV pulses

While the OPO is pumped by the second harmonic of an
injection-seeded Nd:YAG laser, up to 70 mJ of 266 nm light
can be produced simultaneously as schematically shown in
Fig. 1. To minimize optical damage, an aperture is used to
select only about 10 mJ of the 266 nm beam with the most
homogenous beam profile possible, which is then mixed in a
BBO crystal �Castech, Inc.� with the tunable FT-limited out-
put of the OPO to generate pulses in the 204–207 nm range.
An optical delay line is introduced to the path of the
p-polarized 266 nm light to achieve temporal overlap at the
mixing crystal with the OPO signal pulse. A 
 /2 waveplate
is used to adjust the polarization of the OPO to match that of
the 266 nm beam. An uncoated 10 mm long BBO crystal
with an aperture of 7�7 mm2 and cut at �=56° with respect
to the crystal axis is used for type-I phase matching �o+o
→e�. While the walkoff angle is large, close to 90 mrad, and
acceptance angles are small, 0.61 and 0.17 mrad for the IR
and UV beams, respectively, the deff=1.7 pm /V proves to
be superior to type-II mixing �0.3 pm/V�.34 The deep-UV
beam can be separated from the other wavelengths by the use
of a low-pass dichroic mirror or a Pellin–Broca prism.

Performance characteristics required for efficient nonlin-

ear frequency mixing include high pulse energy, narrow line-
width, low beam divergence, reduced jitter, and mutual co-
herence of the interacting pulses. In this logic, the enhanced
properties of the injection-seeded OPO beam are expected to
positively impact the efficiency of the mixing process.

C. OPO cavity locking and frequency stabilization

Although one generally needs only a moderate optical
power to be injected into one of the OPO axial modes to
achieve injection seeding, this is best accomplished when the
cavity length is matched to be a multiple of the injected
wavelength. Deviations from an exact match affect the con-
version efficiency and introduce discrepancies between out-
put and seeding frequencies.36 Hence, stable long-term FT-
limited operation of the OPO requires active stabilization of
the cavity length to compensate for optical, mechanical, or
thermal drifts and fluctuations. Additionally, in order to per-
form continuous wavelength scans with SLM quality, it is
generally necessary to establish a feedback servo loop to
allow the cavity length to follow the scanning injection-
seeding wavelength. Conveniently, no angular adjustments of
the OPO �KTP� crystals were necessary in order to cover the
continuous, mode-hop-free, 20 GHz tuning range of our cw
diode injection-seed laser. However, larger wavelength
changes do require adjustments of the KTP crystals so that
the center of the phase-matched OPO gain profile will be
positioned near the seeded mode. In general, a minimal fre-
quency chirp is obtained when the seeder wavelength equals
the free-running wavelength of the phase-matched OPO.37,38

It has been experimentally observed that for a large phase
mismatch �seed laser detuning� it becomes more challenging
to seed the OPO and achieve a high spectral purity.29,39,40

Several well-established schemes for resonator length
stabilization, such as Hänsch–Couillaud41 and
Pound–Drever–Hall,42 have been applied to injection-seeded
systems. These schemes derive the error signal from the cw
light reflected off by the cavity, usually much weaker than
the high-power pulsed OPO output, which may cause satu-
ration �and sometimes damage� in the PDs and locking elec-
tronics if no additional precautions are taken. Other stabili-
zation methods are able to derive the error signal directly
from the pulsed OPO output, such as minimizing the buildup
time43 and the dither-and-lock technique.22 The buildup time
for nanosecond pulses in OPOs is typically a fraction of the
pump pulse duration; therefore minimizing the buildup time
demands fast and sensitive electronics, making the technique
less attractive for these systems. The dither-and-lock method
is robust and has been widely applied to many injection-
seeded OPOs. It requires fast dithering of the cavity and
somewhat complicated phase sensitive detection. Other more
recent schemes involve optical heterodyning of the seeder
and pulsed OPO radiation36 or hybrid techniques such as the
“intensity-dip” method of He and Orr.31 Another novel sta-
bilization method that offers dual-wavelength capability em-
ploys a sine-offset control and synchronous fire scheme.44

Initially, we adopted the scheme of Hänsch and Couil-
laud using the birefringence of the nonlinear crystals to de-
rive the locking signal by polarization difference analysis of
the light reflected by the cavity. While excellent performance

063106-4 Velarde et al. Rev. Sci. Instrum. 81, 063106 �2010�
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was achieved when only the cw laser was circulating through
the cavity, laborious effort was necessary to achieve long-
term stability of the error signal during the high power
pulsed operation. Although we did not study this effect in
detail, we believe that problems arise from thermal drift in
the crystals’ birefringence induced by the high power pump
beam.

We found that a variation in the intensity dip method
worked best for our needs.31 As the cavity length is swept by
ramping the PZT voltage, one may observe that the signal
from a PD monitoring the overall reflected cw light from the
resonator exhibits a series of well-defined dips corresponding
to the cavity length being resonant with the seeding wave-
length �see Fig. 4�. The depth of modulation is typically
40%–65%, depending on intracavity losses at a particular
wavelength. It was experimentally verified that these dips
coincide with the maximum output power of the OPO, as
well as the maximum injection efficiency of the cw diode
laser. By implementing a locking scheme to hold the cavity
at a position which minimizes this reflection, we were able to
obtain active cavity locking to the seed laser wavelength.
Specifically, the intensity of cw light reflected by the OPO
cavity is continuously monitored by a PD �Thorlabs, Inc.
DET100A� and the PZT position which produces the dip in
the intensity of the reflected beam is located by a “sweep,
hold, and fire” sequence �see Fig. 5�.

First, a trigger pulse from a delay generator �SRS, Inc.
DG535� is sent to a low-cost DAQ card �National Instru-
ments Corp. NI PCI-6025E� on our control computer to start
the locking cycle �Fig. 5�. The computer then sweeps the
PZT voltage across a fringe, while the PD signal is simulta-
neously recorded using the DAQ unit, allowing the determi-
nation of the PZT voltage which corresponds to the reflection
minimum. An aperture is used to limit the amount of light
reaching the PD, which has a large area and a moderate
damage threshold. The DAQ card also provides the ramp
voltages necessary to sweep the PZT element. A low voltage

amplifier �0–30�, 	30–150 V, Piezomechanik, GmbH SVR
150/1� was used between the low-pass filtered DAQ output
and the PZT. The passive home-built low-pass filter is used
to extend the lifetime of the PZT as it has a cutoff frequency
of 5 kHz, well below the mechanical resonance frequency of
the PZT. After this sweep, the PZT voltage is adjusted back
to the value producing the reflection minimum and that volt-
age is held for a few milliseconds. The pump laser is then
fired and finally the PZT is reset to its initial preset value
where the loop starts again and is repeated at the repetition
rate of the laser �10 Hz�.

A subtle advantage to this approach is the avoidance of
any need to apply high voltages to the PZT to perform wide
seed-laser scans. Since the PZT is always reset to the same
initial value, the ramp, hold, and fire technique always locks
to the nearest cavity mode.

The locking scheme is conveniently implemented in
LabVIEW™ �National Instruments Corp.� and the program
diagram is attached as supplementary material.45 A nice fea-
ture of this routine results from the fact that we continuously
monitor the cw light during PZT ramping, effectively using
the OPO cavity as a diagnostic low-resolution scanning
Fabry–Pérot interferometer.

In practice, there is a small ��15%� hysteresis in the
PZT motion which is found upon moving back to the “hold
position.” While a more expensive PZT element with higher
linearity and reduced hysteresis could have been purchased,
an empirically determined correction factor in the
LabVIEW™ program worked very well to compensate for
servo loop hysteresis.

Long term wavelength drifts of the pump Nd:YAG laser
were compensated using another LabVIEW™ programed
locking algorithm that read the output of a high precision
pulsed wavemeter �HighFinesse WS7� and used this reading
to lock to a predetermined wavelength. The idea is based on
the work of Kobtsev et al.46 The wavemeter readout is aver-
aged for a few laser shots and the result is compared to the
predetermined set-point wavelength. Applying a small cor-

FIG. 4. Cavity fringes of the OPO ring cavity observed as the PZT element
on mirror M3 is scanned. The DAQ voltage is amplified �18� before it
reaches the piezoelement. Each dip corresponds to a resonant configuration
of the resonator with respect to the injected seed wavelength.

FIG. 5. Ramp, hold, and fire locking scheme. Upper trace: piezovoltage;
lower trace: PD signal. The discrepancy �indicated by the dashed curve�
between the “found” PZT voltage corresponding to the dip in the PD signal
and the “hold” voltage where the pump fires is attributed to hysteresis of the
piezo and is accounted for in the locking software.

063106-5 Velarde et al. Rev. Sci. Instrum. 81, 063106 �2010�
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recting voltage to the frequency offset input of the injection-
seeding system of the Nd:YAG laser returns the laser to the
set point. Figure 6 shows the wavelength stability obtained in
this way. The same algorithm was successfully applied to
stabilize the seeder ECDL within the resolution of the
wavemeter �100 MHz�. While both lasers can be stabilized
simultaneously, a dual-input capability on the wavemeter is
required.

III. SYSTEM PERFORMANCE

In this section, we present a variety of observations re-
flecting the performance of the OPO based UV light source
described above. We first present in Sec. III A “real world”
examples of uses of the system, namely, recording of the LIF
spectrum of a molecular-beam-cooled sample as well as an
application in optical pumping. In Sec. III B we present more
detailed diagnostic measurements of the OPO and summa-
rize important optical parameters such as conversion effi-
ciency and linewidth.

A. Applications to high resolution spectroscopy
and optical pumping

The deep-UV light source described in this work is well
suited to applications in optical pumping and high resolution
spectroscopy. To demonstrate this, we chose nitric oxide
�NO� as a test molecule based on existing know-how in our
group.10,47–50 The molecular beam apparatus is described
elsewhere.48–50 In brief, a gas mixture of 5% NO in Kr is
expanded into vacuum by means of a home-built pulsed
piezoelectric valve �1 mm expansion orifice� to create a su-
personic molecular beam of rotationally cold NO molecules.
The beam passes through a 2 mm diameter collimating skim-
mer �Beam Dynamics, Inc.� placed 3 cm from the nozzle,
into a differentially pumped region where it is crossed or-
thogonally by the UV light from our OPO-based system. We
measured the most probable beam velocity, 388 m/s. From

this and the geometrical parameters presented in this section,
we estimate the velocity component of the NO sample along
the laser beam direction to be close to �20 m/s. This leads to
an estimate of the residual Doppler width, �Doppler

=190 MHz. LIF is monitored about 10 cm from the nozzle
by means of a solar-blind photomultiplier tube �PMT�
�Hamamatsu Corp. R7154� and lens combination. The PMT
signal is processed by a digital oscilloscope �LeCroy Corp.
LT344� interfaced with a computer to generate the LIF
spectra.

The narrow-band output of the OPO-based UV light
source can be tuned to excite NO in either the B 2�1/2 �v
=3�←X 2�1/2 �v=0� or A2�+ �v=2�←X 2�1/2 �v=0�
band. Typical LIF spectra of lines in these bands are shown
in Figs. 7 and 8, respectively. Both figures show spectral
scans of about 3 GHz length. Scans of up to 15 GHz were
also performed without mode hops from the diode laser. In
Fig. 7, the R11 �0.5� rovibronic transition is shown. The spec-
trum shows clearly resolved 
 doublets and partially re-
solved hyperfine structure.10 Gaussian functions are used to
model the unresolved hyperfine substructure, allowing us to
determine the observed linewidth of the molecular transi-
tions, �UVobserved,1=250 MHz. The obtained average line po-
sition is approximately 0.15 cm−1 to the red from the value
reported by Faris and Cosby.51 This small difference is attrib-
uted to imprecise calibration of the wavemeter since the UV
scale is calculated using the measured wavelengths from the
scanning IR and �half� the Nd:YAG second harmonic. It is
clear that further improvements to the absolute frequency
calibration need to be implemented if one wishes to perform
frequency metrology studies in the deep UV �e.g., Ref. 52�.

Similarly, the data of Fig. 8 can also be used to obtain a
second determination of this type. We accomplished this by
comparing our spectra to simulations from the program

FIG. 6. Stabilization of the injection-seeded Nd:YAG laser by a wavemeter.
At t=0, the laser was turned on without previous warming and set to lock at

1. Notice how after �2.5 h narrower traces are seen indicating that the full
warmup time of the laser has finished. At about 4 h, the set point in the
locking program is changed to 
2 in order to illustrate the technique, then it
is brought down to the initial set point 
1. FIG. 7. �Color online� Representative LIF spectrum obtained from the

R11�0.5� B 2�1/2 �v=3�←X 2�1/2 �v=0� rotational transition. The spectrum
clearly shows 
 doubling and partially resolved hyperfine structure, which
is fitted by individual Gaussian curves of 250 MHz FWHM.
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LIFBASE �Ref. 53� for the unresolved R11�0.5�Q21�0.5� line
pair of the A 2�+ �v=2�←X 2�1/2 �v=0� band. In this way,
we find �UVobserved,2=270 MHz. We use the average of these
two values, �UVobserved=260 MHz, in further analysis below.
We attribute the difference in bandwidth between the two
measured lines to the change in wavelength of the OPO out-
put. Saturation of the A 2�+ transitions was observed for
pulse energies larger than �200 �J. When higher power is
used the line intensity remains unchanged, the line broadens,
and satellite lines attributed to otherwise negligible adjacent
longitudinal cavity modes of the OPO appear in the spectrum
spaced by one FSR in frequency space. Day-to-day operation
showed excellent stability, with drifts on the order of only a
few hundreds of megahertz prior to frequency locking of the
pump and seed lasers.

While one obtains high spectral brightness with this light
source, which is valuable for achieving efficient population
transfer, spectral stability is also critical when carrying out
experiments involving optical pumping. In such experiments,
the population prepared by the laser must be reasonably
stable, often over several hours in order that sufficient signal
to noise may be obtained. A good example of an application
that is rather demanding in this regard is stimulated emission
pumping �SEP�.47,54–61 SEP is a folded variant of optical-
optical double resonance that is particularly sensitive to
wavelength instability due to the fact that the 
 transition is
carried out between 2 ms or longer-lived vibrational states of
the ground electronic state, whose natural linewidth is less
than 1 kHz. Here a PUMP laser excites a molecule to a single
rotational level of an excited electronic state and a second
DUMP laser is used to stimulate emission transferring popu-
lation back to a vibrationally excited level in the ground
electronic state.

To transfer population from the vibrationless level of the

NO molecule found in a molecular beam, the OPO-based
UV light source is used to excite the PUMP transition
A 2�+ �v=2�←X 2� �v=0� shown in Fig. 8 and a DUMP
laser tuned near 450 nm stimulates emission in the
A 2�+ �v=2�→X 2� �v=16� band. The DUMP laser sys-
tem uses the third harmonic of a Nd:YAG laser �Spectra
Physics PRO-200-10� to pump a dye laser �Sirah PRSC-DA-
24� operating on Coumarin 450 generating pulses in the 430–
470 nm region. The PUMP and DUMP laser beams are then
overlapped in space and time with the molecular beam. To
obtain the SEP spectra, we make use of vibrationally pro-
moted electron emission to detect the population produced in
v=16.49,50,58 Here, a low work function ��1.6 eV� surface is
produced by depositing �0.5 ML Cs into a crystalline
Au�111� surface. Electrons emitted from the surface are
monitored while the PUMP wavelength is fixed on the
R11�0.5�Q21�0.5� transition, populating the A 2�+ �v=2�
state and the DUMP wavelength is scanned. Figure 9 shows
a series of sharp peaks corresponding to the allowed stimu-
lated emission transitions to several rotational states of
X 2� �v=16�, where the internal energy of the vibrationally
excited NO molecules exceeds the solid’s work function.

By achieving high stability and saturation of the PUMP
transitions with our newly developed laser, the possibilities
for added complexity of experiments involving vibrationally
promoted exoelectrons are expanded. It is worth noticing that
this system is well capable of producing light around
206 nm, which can be used to pump the a 3� �v=0�
←X 1�+ �v=0� spin-forbidden Cameron band of CO. Meta-
stable CO is an attractive molecule in particular for applica-
tions in Stark-deceleration experiments.62

FIG. 8. �Color online� Typical LIF spectrum of the unresolved
R11�0.5�Q21�0.5� line pair of the A 2�+ �v=2�←X 2�1/2 �v=0�. The LIF-

BASE program �Ref. 53� was used to estimate the line broadening. Calculated
spectra with total resolution of 0.009 cm−1 �270 MHz� �solid curve fit� and
0.001 cm−1 �30 MHz� �narrow doublet curve� are shown for evaluation of
the UV source bandwidth and line assignment. The LIFBASE spectra were
shifted by 0.188 cm−1 to the red to match the experimental curve.

FIG. 9. Electron signal measured after the interaction of vibrationally ex-
cited NO �v=16� with a Au�111� surface with a submonolayer of Cs �see
text�. The unresolved R11�0.5�Q21�0.5� line pair of the A 2�+ �v=2�
←X 2�1/2 �v=0� shown in Fig. 8 is used as the pump transition, while the
DUMP laser is scanned. The group of lines on the left populate the X 2�1/2,
v=16, �=0.5 rotational states while the group on the right corresponds to
states with X 2�1/2, v=16, �=1.5.
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B. OPO characteristics

Figure 10 shows time resolved pulse shapes as obtained
with a fast PD �Electro-Optics Technology ET-2000� for
pump and signal beams of the OPO under seeded and un-
seeded operation. The injection-seeded signal output �nar-
rower solid curve� shows a buildup time of approximately
1.5–2 ns, which is weakly dependent upon the pump laser
power. In comparison, the unseeded pulses �double-dot-
dashed curve� exhibit buildup times about 1 ns longer, cor-
responding roughly to one round trip time of the cavity. The
injection seeding not only increases the intensity of the sig-
nal beam but it lengthens its pulse ��t�6 ns FWHM� due to
the faster buildup time, which is also expected to improve
the bandwidth. The FT limit for this signal transient shown in
Fig. 10 in the idealized case of perfectly Gaussian-shaped
pulses �i.e., �v ·�t�0.44� restricts the bandwidth to �v
�73 MHz.

Although the OPO signal’s bandwidth was not directly
measured, we may estimate it from other laboratory mea-
surements, using the assumption that the bandwidths com-
bine according to the sum of their squares,

�1
2 + �2

2 = �1,2
2 �1�

for the sum frequency generation

�1 + �2 = �1,2. �2�

In this way one may show that

�signal =
�UV

�5
, �3�

assuming �signal��idler.
As was shown above, an upper bound of �UVobserved

=260 MHz was derived from UV LIF spectroscopy. Here

the calculated maximum Doppler contribution, �Doppler

=190 MHz, must be removed �assuming Gaussian fre-
quency profiles� as follows:

�UV
2 = �UVobserved

2 − �Doppler
2 . �4�

From this we derive an estimate of the Doppler-free UV
bandwidth, �UV=177 MHz, which leads to an estimate of
the bandwidth for the IR signal output, �signal�79 MHz, in
line with the derived theoretical value above. This may be
compared to an estimated bandwidth of �100 MHz reported
by Mahnke and co-workers.29,63 Recently, Mahnke and
Wirth63 demonstrated that even when an OPO operates on a
SLM, the linewidth might be broadened by the nondegener-
ate transversal modes. Additionally, shot-to-shot variations in
the temporal profile and frequency chirp due to instantaneous
variations in output frequency during the pulse may further
increase the optical bandwidth.37,38,64 Chirp effects are mini-
mized by reducing the pump energy and keeping the free-
running wavelength of the phase-matched OPO as close as
possible to the seeding wavelength.

We also obtained experimentally derived information on
the efficiency of specific key wavelength conversion steps in
the OPO-based system. In particular, we obtained the ratio of
the signal to pump photon number �N�, which is the OPO’s
quantum efficiency,

�q =
Nsignal

Npump
, �5�

in two ways. First, using a laser energy meter �Gentec
Electro-Optics, Inc.� we measured the pump beam depletion
by tuning the KTP crystals to and away from their phase
matching angles. The obtained quantum efficiency was �q

�0.4 at large pump powers. Second, we measured the pump-
signal energy conversion efficiency,

Isignal

Ipump
= 0.23, �6�

and corrected for the difference in pump and signal photon
energies,

Isignal
pump

Ipump
signal
= 0.23

532 nm

914 nm
= 0.4. �7�

Results of more comprehensive measurements as a function
of pump energy are shown in Fig. 11. Here, one can see that
�q rises rapidly from the oscillation threshold and more
slowly above a pump energy of �60 mJ /pulse. Neverthe-
less �q continues to climb even up to the highest pump en-
ergies used in this work. Measurements without seeding are
also shown for comparison, where one can clearly observe a
higher oscillation threshold and reduced quantum
efficiency.65

We also examined the sum frequency conversion step
used to generate the deep-UV light both by computer mod-
eling �using the SNLO program� and experimentally. Due to
the tight constraints on angular and bandwidth acceptance set
by phase matching conditions in the nonlinear mixing
crystal,66 a high-efficiency SFG process requires beams with
low divergence and nearly identical spatial properties in ad-
dition to narrow linewidths with optimum spectral and tem-

FIG. 10. �Color online� Time-averaged temporal profiles for the incident
pump �broader solid curve�, depleted pump output �dashed gray curve�, and
OPO signal �narrower solid curve�. The peak height of the incident pump
and signal are normalized to unit height, with the depleted pump left on the
same scale as the pump pulse �pump depletion can be approximated as the
difference of the two integrated areas�. The unseeded signal �dot-dashed
curve� is shown for comparison.
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poral overlap. These requirements are often difficult to ob-
tain in high power nanosecond light sources, especially when
using dyes as the gain medium.

As mentioned above, the injection-seeding technique of
this work leads to significantly improved beam quality and
reduced divergence while producing near FT-limited pulses.
This alone brings us closer to the aforementioned require-
ments for more efficient SFG. Furthermore, the buildup time
is typically reduced by about 1 ns upon injection seeding as
shown in Fig. 10, increasing the pulse duration and therefore
improving the temporal overlap �with low pulse-to-pulse
temporal jitter� with the fourth-harmonic pulse of the
Nd:YAG laser in the mixing crystal.

The routinely obtained efficiency for the mixing of nar-
row bandwidth near-IR pulses with the fourth harmonic of
the injection-seeded pump laser in a 1 cm long BBO crystal
was �30%. For example, with 60 mJ/pulse in �pump �at
532 nm� we routinely obtained 14 mJ/pulse in �signal �at
919 nm�, which when mixed with 10 mJ of 266 nm light
yielded 3–4 mJ at 206 nm �25%–34% conversion efficiency�.
The 266 nm pulse energy was kept below 10 mJ to avoid
damage to the BBO crystal. It should be noted that higher
energies are possible, but one must pay careful attention to
all other factors that contribute to crystal damage. Specifi-
cally, with this laser system, pulse energies of up to 5 mJ in
the deep UV were obtained; however a slow degradation of
the BBO mixing crystal’s polished surfaces was observed
over a period of several months of operation, limiting the
maximum power obtained. Heating of the BBO to avoid wa-
ter vapor deposition at the polished surfaces or purging the
crystal environment with dry N2 will, in all likelihood, help
to reduce this problem.

An alternative configuration consists of splitting the
532 nm beam from the injection-seeded Nd:YAG laser into
two beams, one acting as the OPO pump and the other as the
pump source for the fourth harmonic generation. In this way,
any degradation of the OPO pump beam quality �and related
OPO performance� by the generation of the fourth harmonic
is avoided and also the amount of 266 nm light generated is

reduced, therefore minimizing potential optical damage to
the SFG crystal �see for example Ref. 67�.

It is worth mentioning that calculations using the SNLO

program show that by using a cesium lithium borate
�CsLiB6O10 or CLBO� crystal for sum frequency mixing of
the idler beam of our OPO �set at �1.27 �m� with the fifth
harmonic of the Nd:YAG laser �213 nm�, wavelengths as
short as 182.5 nm can be obtained.

IV. SUMMARY

We have implemented a novel all-solid-state source
of tunable deep-UV radiation capable of generating up to
5 mJ/pulse with a bandwidth better than 0.01 cm−1. The UV
output is produced by highly efficient sum frequency genera-
tion of FT-limited near-IR pulses and the fourth harmonic
beam of an injection-seeded Nd:YAG laser. The high conver-
sion efficiency of this process was measured to be �30%
and is attributed to the good quality of the near-IR beam.
This narrowband light is produced by injection seeding of a
home-built dual KTP crystal OPO which has an overall con-
version efficiency of �40%. The injected cw seeding light
originated from an external cavity diode laser is tunable be-
tween 875 and 940 nm. The OPO cavity was actively stabi-
lized to the diode wavelength by a new computer-controlled
variant of the intensity-dip locking method. The UV tuning
range was 204–207, limited by the diode laser. This range
can be easily extended by exchanging first the laser diode
�202–210 nm�, and then the cavity mirrors and KTP crystals
if necessary �to a total range of �190–212 nm�. Also by
using the idler of our current configuration ��1.27 �m� and
the fifth harmonic of the Nd:YAG laser, wavelengths lower
than 185 nm can be achieved in a CLBO mixing crystal.
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