161 research outputs found

    Unravelling the Mechanism of the Ru/C‐Catalysed Isohexide and Ether Isomerization by Hydrogen Isotope Exchange

    Get PDF
    In this article we show that the catalytic isomerization of isohexide sugar alcohols as well as their respective ethers can occur by a hydride-based mechanism rather than a dehydrogenation/re-hydrogenation. C−H bonds in α-position to hydroxy and ether groups are activated using Ru/C as solid catalyst at temperatures as high as 160 °C and above. Hydrogen isotope exchange experiments proved that a full hydride exchange and isomerization is possible for isohexides but unexpectedly also for their methyl ethers. This is of great importance as it proves the co-existence of the both mechanisms for reactions that were so far assumed to occur solely by a dehydrogenation/re-hydrogenation. Hence, this co-existence should be taken into account for kinetic investigations of such reaction systems especially in the conversion of biomass-based chemicals under hydrogenation conditions

    Oxidative carboxylation of 1-decene to 1,2-decylene carbonate

    Get PDF
    Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO2, a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach

    The effect of ring size on the selective carboxylation of cycloalkene oxides

    Get PDF
    Carbon dioxide utilisation technology can contribute to the reduction of atmospheric CO2 levels both through its sequestration from flue gases and indirectly by relieving pressure on conventional feedstocks in chemical manufacturing. A promising approach is to employ CO2 to produce valuable cyclic carbonates (CCs) in reaction with suitable epoxides. This also has the advantage that carbon dioxide replaces toxic and hazardous reactants such as phosgene. In earlier work we have investigated the synthesis of epoxides from cycloalkenes using supported gold and gold–palladium nanoparticles as catalysts and oxygen from air as the oxidant under solvent free conditions. A strong dependence of epoxide selectivity on ring size was observed with C5 < C6 < C7 ≪ C8. In this study we extend this work to the investigation of cycloaddition of CO2 to different cycloalkene oxides with the ultimate aim of designing a process in which both epoxidation of an alkene and incorporation of CO2 could be achieved in a single process. However, we have found the opposite trend for the selectivity to carbonates: smaller ring cycloalkene oxides giving the highest carbonate selectivities while large rings do not yield CCs at all. The product distributions suggest that an alternative ring opening of the epoxides to yield alcohols and ketones is preferred under all the experimental conditions explored for larger ring systems. Additionally, the mechanism of the CC synthesis using a quaternary ammonium salt and ZnBr2 as the catalyst system was investigated using DFT methods. The results of the calculations support the experimental findings

    Oxidative carboxylation of 1-Decene to 1,2-Decylene carbonate

    Get PDF
    © 2018 The Author(s) Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO 2 , a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach

    Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts

    Get PDF
    In this study, active cobalt-based catalysts are reported for the solvent-free aerobic epoxidation of 1-decene as a non-noble metal, alternative to the conventionally used gold catalyst. No sacrificial reductant is applied and air is used as primary oxidant at ambient pressure. The influence of different radical initiators and the product distribution over time is investigated. Evidence for a reaction mechanism similar to the previously reported gold-catalysed aerobic epoxidation of 1-decene, is given. Furthermore, it is shown that the catalyst stability is influenced by the choice of the support

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Effect of Smoking on Circulating Angiogenic Factors in High Risk Pregnancies

    Get PDF
    Objective: Changes in maternal concentrations of the anti-angiogenic factors, soluble fms-like tyrosine kinase 1 (sFlt1) and soluble endoglin (sEng), and the pro-angiogenic placental growth factor (PlGF) precede the development of preeclampsia in healthy women. The risk of preeclampsia is reduced in women who smoke during pregnancy. The objective of this study was to investigate whether smoking affects concentrations of angiogenic factors (sFlt1, PlGF, and sEng) in women at high risk for developing preeclampsia. Study Design: We performed a secondary analysis of serum samples from 993 high-risk women (chronic hypertension, diabetes, multifetal gestation, and previous preeclampsia) in a preeclampsia prevention trial. sFlt1, sEng and PlGF were measured in serum samples obtained at study entry, which was prior to initiation of aspirin (median 19.0 weeks' [interquartile range of 16.0-22.6 weeks']). Smoking status was determined by self-report. Results: sFlt1 was not significantly different in smokers from any high-risk groups compared to their nonsmoking counterparts. PlGF was higher among smokers compared to nonsmokers among diabetic women (142.7 [77.4-337.3] vs 95.9 [48.5-180.7] pg/ml, p = 0.005) and women with a history of preeclampsia (252.2 [137.1-486.0] vs 152.2 [73.6-253.7] pg/ml, p = 0.001). sEng was lower in smokers with multifetal gestations (5.8 [4.6-6.5] vs 6.8 [5.5-8.7] ng/ml, p = 0.002) and trended lower among smokers with diabetes (4.9 [3.8-5.6] vs 5.3 [4.3-6.3] ng/ml, p = 0.05). Smoking was not associated with a lower incidence of preeclampsia in any of these groups. Conclusions: In certain high-risk groups, smoking is associated with changes in the concentrations of these factors towards a pro-angiogenic direction during early pregnancy; however, there was no apparent association between smoking and the development of preeclampsia in our cohort

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore