5 research outputs found

    Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye

    Get PDF
    Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Mu ̈ ller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss

    The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system

    No full text
    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications

    The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system

    No full text
    Toll-like receptor (TLR) ligation activates both the innate and adaptive immune systems, and plays an important role in antiviral and anti-tumor immunity. Therefore, a significant amount of effort has been devoted to exploit the therapeutic potential of TLR agonists. Depending on the therapeutic purpose, either as adjuvants to vaccine, chemotherapy or standalone therapy, TLR agonists have been administered via different routes. Both preclinical and clinical studies have suggested that the route of administration has significant effects on pharmacokinetics, and that understanding these effects is critical to the success of TLR agonist drug development. This article will summarize the pharmacokinetics of TLR agonists with different administration routes, with an emphasis on clinical studies of TLR ligands in oncologic applications
    corecore