377 research outputs found

    A regional solar forecasting approach using generative adversarial networks with solar irradiance maps

    Get PDF
    The intermittent and stochastic nature of solar resource hinders the integration of solar energy into modern power system. Solar forecasting has become an important tool for better photovoltaic (PV) power integration, effective market design, and reliable grid operation. Nevertheless, most existing solar forecasting methods are dedicated to improving forecasting accuracy at site-level (e.g. for individual PV power plants) regardless of the impacts caused by the accumulated penetration of distributed PV systems. To tackle with this issue, this article proposes a novel generative approach for regional solar forecasting considering an entire geographical region of a flexible spatial scale. Specifically, we create solar irradiance maps (SIMs) for solar forecasting for the first time by using spatial Kriging interpolation with satellite-derived solar irradiance data. The sequential SIMs provide a comprehensive view of how solar intensity varies over time and are further used as the inputs for a multi-scale generative adversarial network (GAN) to predict the next-step SIMs. The generated SIM frames can be further transformed into PV power output through a irradiance-to-power model. A case study is conducted in a 24 × 24 km area of Brisbane to validate the proposed method by predicting of both solar irradiance and the output of behind-the-meter (BTM) PV systems at unobserved locations. The approach demonstrates comparable accuracy in terms of solar irradiance forecasting and better predictions in PV power generation compared to the conventional forecasting models with a highest average forecasting skill of 10.93±2.35% for all BTM PV systems. Thus, it can be potentially used to assist solar energy assessment and power system control in a highly-penetrated region

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    Operationalizing frailty among older residents of assisted living facilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frailty in later life is viewed as a state of heightened vulnerability to poor outcomes. The utility of frailty as a measure of vulnerability in the assisted living (AL) population remains unexplored. We examined the feasibility and predictive accuracy of two different interpretations of the Cardiovascular Health Study (CHS) frailty criteria in a population-based sample of AL residents.</p> <p>Methods</p> <p>CHS frailty criteria were operationalized using two different approaches in 928 AL residents from the Alberta Continuing Care Epidemiological Studies (ACCES). Risks of one-year mortality and hospitalization were estimated for those categorized as frail or pre-frail (compared with non-frail). The prognostic significance of individual criteria was explored, and the area under the ROC curve (AUC) was calculated for select models to assess the utility of frailty in predicting one-year outcomes.</p> <p>Results</p> <p>Regarding feasibility, complete CHS criteria could not be assessed for 40% of the initial 1,067 residents. Consideration of supplementary items for select criteria reduced this to 12%. Using absolute (CHS-specified) cut-points, 48% of residents were categorized as frail and were at greater risk for death (adjusted risk ratio [RR] 1.75, 95% CI 1.08-2.83) and hospitalization (adjusted RR 1.54, 95% CI 1.20-1.96). Pre-frail residents defined by absolute cut-points (48.6%) showed no increased risk for mortality or hospitalization compared with non-frail residents. Using relative cut-points (derived from AL sample), 19% were defined as frail and 55% as pre-frail and the associated risks for mortality and hospitalization varied by sex. Frail (but not pre-frail) women were more likely to die (RR 1.58 95% CI 1.02-2.44) and be hospitalized (RR 1.53 95% CI 1.25-1.87). Frail and pre-frail men showed an increased mortality risk (RR 3.21 95% CI 1.71-6.00 and RR 2.61 95% CI 1.40-4.85, respectively) while only pre-frail men had an increased risk of hospitalization (RR 1.58 95% CI 1.15-2.17). Although incorporating either frailty measure improved the performance of predictive models, the best AUCs were 0.702 for mortality and 0.633 for hospitalization.</p> <p>Conclusions</p> <p>Application of the CHS criteria for frailty was problematic and only marginally improved the prediction of select adverse outcomes in AL residents. Development and validation of alternative approaches for detecting frailty in this population, including consideration of female/male differences, is warranted.</p

    Evaluation of MCM-2 Expression in TMA Cervical Specimens

    Get PDF
    Background:Minichromosome maintenance proteins (MCM) are highly expressed in actively replicating cells. The need for biological markers for cervical carcinoma and its precursor lesions is emerging. Our main aim was to determine the immunohistochemical expression of MCM-2 in HIV-positive and -negative dysplastic cervical specimens. Methods:Immunohistochemical analysis of MCM-2 was performed in a total of 352 cervical TMA specimens of normal control, low-grade CIN, high-grade CIN and invasive tumor. 38 specimens were from HIV-positive women. A receiver operating characteristic (ROC) curve was constructed to determine the best cutoff to diagnose high-grade CIN and invasive cervical cancer. Results:In the progression from normal epithelium to high-grade CIN and invasive tumor we found significant differences in the MCM-2 expression (p,0.05). Based on the ROC curve of 80% with an area under the curve (AUC) of 0.78, expression of MCM-2 to diagnose high-grade CIN and invasive tumor resulted in sensitivity of 81%, specificity of 66%, a positive predictive value (PPV) of 86% and a negative predictive value (NPV) of 57%. HIV-positive cervices revealed a decreasing expression of MCM-2 in both LGCIN and HGCIN compared with HIV-negative specimens (p,0.0001). Conclusions:The present study suggests that immunohistochemical MCM-2 may not be a promising biomarker for diagnosing high-grade CIN and invasive cance

    Neural hypernetwork approach for pulmonary embolism diagnosis

    Get PDF
    Background Hypernetworks are based on topological simplicial complexes and generalize the concept of two-body relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. A pulmonary embolism is a blockage of the main artery of the lung or one of its branches, frequently fatal. Results Our study uses data on 28 diagnostic features of 1427 people considered to be at risk of pulmonary embolism enrolled in the Department of Internal and Subintensive Medicine of an Italian National Hospital “Ospedali Riuniti di Ancona”. Patients arrived in the department after a first screening executed by the emergency room. The resulting neural hypernetwork correctly recognized 94 % of those developing pulmonary embolism. This is better than previous results obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space). Conclusion In this work we successfully derived a new integrative approach for the analysis of partial and incomplete datasets that is based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The novelty of this method is that it does not use clinical parameters extracted by imaging analysis

    Molecular Analysis of Serum and Bronchoalveolar Lavage in a Mouse Model of Influenza Reveals Markers of Disease Severity That Can Be Clinically Useful in Humans

    Get PDF
    Background: Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities. Methodology/Principal Findings: We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL) and sera from mice infected with influenza A virus (PR8 strain) using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with “peak viremia,” “inflammatory damage,” as well as the “recovery phase.” In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their “appearance” in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence. Conclusions/Significance: The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.Singapore. National Research FoundationSingapore-MIT Alliance for Research and Technology (ID-IRG research program

    Excess cardiovascular mortality associated with cold spells in the Czech Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between cardiovascular mortality and winter cold spells was evaluated in the population of the Czech Republic over 21-yr period 1986–2006. No comprehensive study on cold-related mortality in central Europe has been carried out despite the fact that cold air invasions are more frequent and severe in this region than in western and southern Europe.</p> <p>Methods</p> <p>Cold spells were defined as periods of days on which air temperature does not exceed -3.5°C. Days on which mortality was affected by epidemics of influenza/acute respiratory infections were identified and omitted from the analysis. Excess cardiovascular mortality was determined after the long-term changes and the seasonal cycle in mortality had been removed. Excess mortality during and after cold spells was examined in individual age groups and genders.</p> <p>Results</p> <p>Cold spells were associated with positive mean excess cardiovascular mortality in all age groups (25–59, 60–69, 70–79 and 80+ years) and in both men and women. The relative mortality effects were most pronounced and most direct in middle-aged men (25–59 years), which contrasts with majority of studies on cold-related mortality in other regions. The estimated excess mortality during the severe cold spells in January 1987 (+274 cardiovascular deaths) is comparable to that attributed to the most severe heat wave in this region in 1994.</p> <p>Conclusion</p> <p>The results show that cold stress has a considerable impact on mortality in central Europe, representing a public health threat of an importance similar to heat waves. The elevated mortality risks in men aged 25–59 years may be related to occupational exposure of large numbers of men working outdoors in winter. Early warnings and preventive measures based on weather forecast and targeted on the susceptible parts of the population may help mitigate the effects of cold spells and save lives.</p

    Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer

    Get PDF
    Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients
    corecore