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A B S T R A C T

The intermittent and stochastic nature of solar resource hinders the integration of solar energy into modern
power system. Solar forecasting has become an important tool for better photovoltaic (PV) power integration,
effective market design, and reliable grid operation. Nevertheless, most existing solar forecasting methods are
dedicated to improving forecasting accuracy at site-level (e.g. for individual PV power plants) regardless of the
impacts caused by the accumulated penetration of distributed PV systems. To tackle with this issue, this article
proposes a novel generative approach for regional solar forecasting considering an entire geographical region
of a flexible spatial scale. Specifically, we create solar irradiance maps (SIMs) for solar forecasting for the first
time by using spatial Kriging interpolation with satellite-derived solar irradiance data. The sequential SIMs
provide a comprehensive view of how solar intensity varies over time and are further used as the inputs for a
multi-scale generative adversarial network (GAN) to predict the next-step SIMs. The generated SIM frames can
be further transformed into PV power output through a irradiance-to-power model. A case study is conducted
in a 24 × 24 km area of Brisbane to validate the proposed method by predicting of both solar irradiance
and the output of behind-the-meter (BTM) PV systems at unobserved locations. The approach demonstrates
comparable accuracy in terms of solar irradiance forecasting and better predictions in PV power generation
compared to the conventional forecasting models with a highest average forecasting skill of 10.93 ± 2.35%
for all BTM PV systems. Thus, it can be potentially used to assist solar energy assessment and power system
control in a highly-penetrated region.
1. Introduction

1.1. Background

Solar energy is one of the most viable alternatives to fossil fuels
because it is environmentally friendly and inexhaustible [1]. However,
the intermittent and stochastic nature of the solar resource inhibits
optimal utilization of solar energy and poses challenges to power
grids [2]. PV power generation is highly dependent on the changes
in solar irradiance, i.e., (1) deterministic variability induced by the
rotation of the earth and its orbital movement around the sun, and
(2) the stochastic variability caused by atmospheric processes such as
cloud transients. For the former one, solar irradiance demonstrates
predictable diurnal and seasonal trends as shown in Fig. 1(a) and
(b). For example, during summer the sun’s angle is highest when the
northern hemisphere is tilted towards the sun. Thus, the sun provides
more energy to the earth’s surface and the average solar irradiation is
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higher than that in other seasons. Similarly, solar irradiation also shows
a diurnal trend which is resulted from the rotation of the earth.

For the latter one, solar irradiance becomes non-stationary due to
its more stochastic and rapidly changing behaviors caused by moving
clouds. This cloud-induced intermittency can cause the so-called partial
shading effect in PV systems, which further results in frequency im-
balance, voltage limit violation, and malfunction of protection devices,
especially for those areas with high PV penetrations [3]. Recently,
there has been a substantial upsurge in the expansion of small-scale
distributed PV systems that operate behind the meter (BTM). From the
perspective of grid operators, these PV power generators are ‘‘invis-
ible’’, signifying that their power productions are not systematically
monitored in real-time at the operational level of the power grid.
Nonetheless, the electricity generated by these units effectively counter-
balances the power requirements of consumers, consequently altering
the overall profile of the net electrical load [4]. As the accumulation of
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Fig. 1. Solar irradiance variability: (a) seasonal variation with daily averaged values, (b) diurnal variation with minutely values on 2018 April 12 at Golden, Colorado, and (c) a
zoomed view from 13:30 to 14:30 pm on the same day. The data is obtained from the National Renewable Energy Laboratory (NREL) Baseline Measurement System [6].
BTM PV capacity increases, it is crucial to forecast BTM PV power pro-
duction to maintain a balance between power supply and demand [5].
Therefore, reliable and accurate forecasts and estimation of distributed
PV power production and solar resource are required for better power
system operation and solar utilization.

1.2. Related works

In a symbiotic relationship to the development of solar energy
technology, solar forecasting has become one of the most prominent
topics in the field [7]. However, most of the existing studies are ded-
icated to forecasting the output power of individual PV power plants,
where the production measurements and local weather data at the site
are available. There is still a limited number of works focus on the
estimation of the regional power production of distributed PV systems.

1.2.1. Regional solar forecasting
Regional solar forecasting is referred to as the forecasts of the

amount of solar irradiance or PV power generation that will be avail-
able in a specific region or area over a period of time. The range of an
interested region can vary depending on the density of PV installations,
grid infrastructure, weather patterns, and the specific objectives of the
forecasting applications. The forecasting approaches for regional PV
power can be grouped into bottom-up and upscaling approaches, based
n the availability of the requisite PV system data [8].

The bottom-up forecasting involves predicting PV power generation
n a given area by aggregating the predictions for individual PV sites.
his method is particularly suitable for aggregating all individual PV
ower systems when their specifications are known (e.g., the location
nd capacity) and understanding the localized effects in regional analy-
es. As discussed in [9], regional PV power production can be estimated
y predicting each PV installation in the interested region with well-
efined physical models combined with irradiance and weather data.
imilarly, the California Independent System Operator (ISO) collected
ll the PV power data and combined it with high-resolution irradiance
nd weather forecasts data to estimate the total contribution of the
istributed PV systems in its grid [10]. In [11], the researchers used
lustering and blending strategies to group PV systems with similar
eather and geographical conditions into clusters. Then they used the
nalog ensemble model to predict regional PV power based on the
ssumption that the PV systems in each cluster share identical solar
rradiance and other parameters. This approach offers the advantage of
xplicitly considering the unique characteristics of each system. How-
ver, it presents challenges in the context of distributed PV forecasting,
s the availability of PV system data is often limited or incomplete.

In contrast, the upscaling approach is more suitable for the scenario
here only partial PV power data are known, e.g., the data from

elected representative PV systems can be used to estimate the total
eneration of the region [12]. Lorenz et al. [13] employed physical
odels and upscaling techniques to generate regional PV point fore-

asts for a forecast horizon up to 2 days ahead, aiming to provide
2

accurate predictions of PV power output at a regional level. To employ
this approach effectively, it is crucial to carefully select a subset of PV
systems and conduct comparisons with metered data on a statistically
significant number of sites as benchmarks. This ensures accurate and
reliable assessments of the forecasted performance. The problem of
poor representation is considered in [14,15], where the data from a
large sample of PV systems has been fed into PV models. In [16],
fuzzy confidence intervals are employed to handle uncertainties in the
input data. This approach offers the advantage of gathering data from
a limited number of locations within the region, rather than requiring
continuous monitoring of all locations.

In cases where specific data for individual systems is unavailable
but aggregated regional PV power data is accessible, it is possible
to treat regional forecasting as a simple time series forecasting task
by directly predicting the aggregated PV power generation data us-
ing statistical models. For example, in [17], the provincial electricity
energy generation data can be obtained from the open data portal of
the Spanish regulator Red Eléctrica Española. The authors utilize deep
neural networks to estimate multiple conditional quantiles on regional
renewable electricity production with gridded NWP variables covering
the region of interest. If no data is available for either individual PV
systems or the region, solar irradiance forecasts can be transformed
to power based on the estimated installed capacity [18]. For instance,
Lorenz et al. [19] introduced a methodology that effectively predicts
solar irradiance based on weather forecasts, enabling its application
in the regional forecasting of PV power output for 11 sites located in
Germany.

Apart from the methods using PV power data and weather forecasts,
image-based models can be used to assess solar energy resources using
satellite remote sensing data. A study uses a Geographic Information
System (GIS) tool to generate solar radiation maps to evaluate monthly
and yearly solar radiation distribution for the first time in Oman,
which helps policymakers to efficiently establish a viable solar energy
market [20]. Besides, solar power maps are produced by using a small
set of metered PV systems in [21], and can then be used in conjunction
with other data sources (such as weather data or satellite imagery) for
more accurate forecasting of the total distributed solar PV generation of
an entire region. Nonetheless, the quality of solar power maps largely
depends on the distribution and density of PV power plants. For regions
with sparse or unobserved PV systems, it is difficult to generate solar
power maps that can accurately describe PV production.

1.2.2. Generative solar forecasting
Supported by the recent development of computational hardware

and the exponential growth of available data, deep learning (DL) has
achieved great success in many industrial and academic fields. In the
solar community, researchers have also utilized DL models such as
recurrent neural networks (RNNs) for solar forecasting, i.e., making
forecasts by processing sequential data and learning temporal depen-
dencies in time series. Recently, generative models, e.g., generative
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adversarial network (GAN) architecture, are employed in solar fore-
casting. Unlike the RNNs, the underlying principle of the generative
approaches is to learn data distribution of training data and try to
generate data following that distribution. Thus, GAN models are used
to generate synthesized solar irradiance or PV power data to facilitate
training other DL models. For example, Jiang et al. Wang et al. [22]
used a GAN to generate training data for weather classification and day-
head PV power prediction and Khodayar et al. [23] proposed a scalable
GAN to generate data samples from the probability densities obtained
from each node of a graph. Debnath et al. [24] introduced a time-
series data augmentation method to address the data scarcity problem
in multi-variate solar forecasting. In [25], the author used GANs to
model uncertainties in different forecasting scenarios for stochastic PV
power generation.

Besides, GANs can be also combined with other forecasting to
enhance forecasting performance [26,27]. Huang et al. [26] proposed
a time series forecasting based on CGANs. The main contribution
of this work lies in the modification of the generator, in which the
convolutional layers are replaced by a regression model (i.e., Conv1D)
for temporal feature extraction and a Bi-LSTM for making predictions.
Similarly, the discriminator compares the prediction (fake) and the
ground truth (real) for improving the generator. In [28], the authors
first use a wavelet transform package to decompose the GHI time
series into sub-frequency signals. Then GANs are used as the forecasting
models for each sub-signal and the predictions for each sub-signal are
reconstructed. Instead of using back-propagation, an evolutionary algo-
rithm based on the dragonfly algorithm is used as the training method,
which is further optimized by a three-phase adaptive modification. In
addition to time series, the generative architectures also demonstrate
powerful ability in image-based forecasting. In [29], the authors use the
GAN model to combine with other pre-processing techniques to predict
annual hourly solar irradiance on building facades using fish-eye im-
ages. In [30], cloud coverage can be predicted by producing the future
frames of a sky image sequence with GAN. Nevertheless, the clouds
are highly deformable objects with continuously changing shapes and
difficulties still exist in the estimation of clouds and the conversion
from sky images to ground-projected shadows and irradiance. These
works are still dedicated to improving site-specific forecasting accuracy
without addressing the problems in forecasts at regional levels.

1.3. Contributions

In light of the above motivations, a novel generative approach is
proposed to predict regional solar irradiance variation for estimating
distributed PV power production. This method uses spatial Kriging to
generate image-based input data, namely solar irradiance maps (SIMs)
with satellite-derive irradiance data. Then a pre-trained multi-scale
GAN generates next-step SIMs from an input sequence of the previous
5 frames. The predicted SIMs frames can be further transformed into
individual PV power outputs at any location in the region, thus making
it particularly suitable for the utilities to estimate unobserved PV
systems. To the best of our knowledge, this is the first work that uses
GAN for regional solar forecasting. In light of the above, the scientific
contributions of this study can be summarized as follows:

• This paper proposes a generative forecasting approach for so-
lar irradiance at the regional level where conventional methods
struggle. It extends forecasts of small areas to regional forecasts
by generating the solar profile of an entire region of flexible
geographical scale and spatial resolution.

• Unlike other generative approaches trained on time series, we cre-
ate a new image-based data source for the generative forecasting
model, i.e. SIMs, which provide an intuitive and visualized view
of how solar irradiance varies at a regional level. The sequential
SIMs are created by interpolating the gridded satellite-derived
irradiance time series which contains both temporal and spatial
information.
3

• Last but not least, the predicted SIMs can be used for estimating
the distributed PV power in that region. It enables forecasts of
individual PV output by extracting the predicted irradiance time
series at any geographical location and converting it to PV data
with an irradiance-to-power conversion model. A case study is
provided to verify the effectiveness of our approach on real-world
PV output data, making it promising for practical applications.

The remainder of this paper is organized as follows. Section 2
describes the data for the experiment. Section 3 introduced the pro-
posed solar forecasting approach with a detailed explanation. Sec-
tion 4 presents the experiment results with discussions, followed by the
conclusion and future work in Section 5.

2. Data description

2.1. Solar irradiance data

Publicly available and high-quality solar resource data is fundamen-
tal and crucial for solar technologies. It enables accurate predictions
of PV system output and facilitates the deployment of solar energy
technologies in PV systems. The NSRDB is a comprehensive compilation
of hourly and half-hourly data, including the three primary solar radi-
ation measurements, namely global horizontal irradiance (GHI), direct
normal irradiance (DNI), and diffuse horizontal irradiance (DHI), along
with accompanying meteorological data [31]. The current version of
NSRDB is constructed by modeling techniques utilizing multi-channel
measurements obtained from geostationary satellites, whereas earlier
versions relied on cloud and weather data sourced primarily from air-
ports. The inclusion of an sufficient number of geographically diverse
locations, as well as meticulous consideration of temporal and spa-
tial scales, ensures accurate representation of regional solar radiation
climates in the NSRDB.

There are two commonly applied methods for obtaining solar re-
source data from models: (a) an empirical approach that correlates
ground-based observations with satellite measurements, and (b) a
physics-based approach that considers the radiation received at the
satellite and generates retrievals to estimate clouds and surface ra-
diation. While empirical methods have traditionally been used for
calculating surface radiation, the advancement of faster computing has
made physical models feasible [32]. The Physical Solar Model (PSM)
developed by NREL computes GHI using visible and infrared chan-
nel measurements from the Geostationary Operational Environmental
Satellites (GOES) system. The current NSRDB contains multiple datasets
with various spatial and temporal resolutions. The data is generated by
an improved version of PSM V3 and shows better correlation with the
ground-measured data [33].

In this article, we use the dataset covering Asia, Australia, and
Pacific regions with a 2 km × 2 km, 10-min resolution from 2018–2020.
The data is regularly gridded with a spatial resolution of approximately
0.02◦ in both latitude and longitude. Particularly, a 24 × 24 km2 area in

risbane shown in Fig. 2(a), which is located between Latitudes 27.36◦

nd 27.58◦ South and Longitudes 152.91◦ and 153.15◦ East, is chosen
s the interested region for forecasting due to the high penetration of
istributed PV systems. In this region, there are 156 solar irradiance
easurement points (red dots) evenly located in this region with a

patial resolution of 2 km as shown in Fig. 2(b). We use 2018–2019
ata as the training set and 2020 data for out-of-sample testing. Besides,
he zero values during the night are removed and diurnal values from
6:00 to 18:00 are preserved. Fig. 2(c) shows an example of the satellite
erived GHI at one of the locations.

To remove the diurnal trend of solar irradiance data, we use the
lear-sky index (CSI) for generating SIMs instead of directly using GHI
alues. This step is very important for generating SIMs because it ensure
onsistency of SIMs regarding ‘‘clearness’’ rather than solar irradiance
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Fig. 2. The target area in Brisbane, Australia: (a) satellite imagery, (b) geographic locations of data points. The red dots indicate the locations where solar irradiance are available
(observed) and the blue squares are the BTM PV systems for estimation (unobserved), (c) daily solar irradiance variation at an observed location, and (d) the corresponding CSI
values.
intensity. The CSI is defined as the ratio between the measured irradi-
ance (𝐼) and clear-sky irradiance (𝐼cs) under a clear-sky atmosphere:

CSI = measured GHI
clear-sky GHI (1)

where the clear-sky GHI values are calculated by using Ineichen–Perez
clear-sky model [34] that considers Linke turbidity. Since there are
overshoot GHI values which make CSI abnormally high, we limit CSI
values at a range of (0, 1.2] to reduce unexpected predictions. An
example of corresponding CSI is shown in Fig. 2(d).

2.2. PV output data

To validate the effect of the method, we utilize the forecasting
results for BTM PV power estimation. The PV output data are obtained
from PVOutput.org, which is a widely-used online platform that allows
users to track and share PV system performance data in real-time.
This article leverages the wealth of the data for empirical research
to investigate and evaluate the regional BTM PV power production
across different geographical locations, system sizes, and environmental
conditions. In this sense, we selected 30 PV systems of capacities
from 4 kW to 13.08 kW in this area for validation and demonstration
purposes. Fig. 2(b) shows the geographic distribution of the selected
PV systems (blue squares) based on their coordination information.
4

3. Methodology

3.1. The proposed regional solar forecasting framework

Unlike conventional solar forecasting methods that forecast future
solar irradiance at a single location, the objective of the proposed fore-
casting framework is to predict solar radiation of an entire region by
generating further SIMs without exogenous variables. Fig. 3 illustrates
a general process of the proposed regional solar forecasting framework.
It consists of three stages: (1) data processing and SIM generation,
(2) adversarial training and forecasting, and (3) irradiance-to-power
conversion.

3.2. Creating SIMs using spatial kriging

In the first stage, we create solar irradiance maps using kriging in-
terpolation. Creating SIMs for a certain region entails creating graphics
that depict the geographical distribution of solar irradiance intensity
across that area. Kriging is a weighted interpolation method based on
a geostatistical process that produces an estimated surface from a set
of measured points. It assumes that the distance or direction between
sample points reflects a spatial correlation and determines the values
for unknown locations.

Given solar irradiance time series 𝑰(𝑡) at a set of locations 𝐬 ∈ R𝑑 ,
the spatial–temporal relation of the solar irradiance observations in the
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Fig. 3. The proposed regional solar forecasting framework.

Fig. 4. (a) Himawari-8 satellite imagery of East Australia on December 15, 2019, at
9:30 am (local time); (b) Brisbane. A whiter pixel indicates thicker cloud over the
area, associated with a lower CSI value; (c) NSRDB satellite-derived solar irradiance
observations; (d) interpolated SIMs (darker color with lower 𝑘𝑡 values indicates more
shaded areas and vice versa.).
5

interested region can be represented as:

ℐ =
{

𝑰
(

𝐬1; 𝑡1
)

,… , 𝑰
(

𝐬𝑛; 𝑡𝑛
)}⊤ (2)

where 𝑛 is the number of locations where solar irradiance data is
available. When time step 𝑡𝑛 at each location are identical, we can
decompose ℐ into:

ℐ =
{

𝑰 (1), 𝑰 (2),… , 𝑰 (𝑚)}⊤ (3)

𝑰 (𝑘) =
{

𝐼
(

𝐬1; 𝑡𝑘
)

, 𝐼
(

𝐬2; 𝑡𝑘
)

,… , 𝐼
(

𝐬𝑛; 𝑡𝑘
)}

(4)

where 𝑘 ∈ {1,… , 𝑚} is temporal index and 𝑚 is the number of time
steps. Then we determine the spatial resolution of interpolated data and
create the coordinate meshgrid for mapping the interpolated values to
corresponding coordinates.

D =
⎡

⎢

⎢

⎣

𝐬1 ⋯ 𝐬𝑞
⋮ ⋱ ⋮
𝐬𝑝 ⋯ 𝐬𝑝𝑞

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(𝑥1, 𝑦1) ⋯ (𝑥𝑝, 𝑦𝑝)
⋮ ⋱ ⋮

(𝑥𝑝, 𝑦𝑝) ⋯ (𝑥𝑝𝑞 , 𝑦𝑝𝑞)

⎤

⎥

⎥

⎦

where 𝑝 and 𝑞 are the numbers of interpolated latitudes and longitudes,
respectively. The total number of interpolated coordinates is equal to
𝑝 × 𝑞 = 𝑅𝑜𝑏𝑠.∕𝑅𝑖𝑛𝑡𝑒𝑟. × 𝑛 where 𝑅𝑜𝑏𝑠. and 𝑅𝑖𝑛𝑡𝑒𝑟. respectively denote.

Given the coordinate meshgrid, the estimated value for an unob-
served location 𝐬0 can be obtained by calculating the weighted sum of
nearby observations as shown below:

𝐼∗(𝐬0) = 𝛬 × 𝑰(𝐬𝑖, 𝑡𝑘) =
𝑛
∑

𝑖=1
𝜆𝑖𝐼(𝑥𝑖, 𝑦𝑖, 𝑡𝑘) (5)

𝑛
∑

𝑖=1
𝜆𝑖 = 1 (6)

where 𝐼∗(𝐬0) is the estimation, 𝑥𝑖 and 𝑦𝑖 are coordinates at location
𝑠𝑖, and 𝛬 = {𝜆1,… , 𝜆𝑛} is the weights vector representing the weights
for the 𝑛 neighbors 𝐬𝑛. Furthermore, by requiring all weights summing
up to one in Eq. (6), the estimation is assured unbiased. A single
weight can thereby either larger than one or smaller than zero, allowing
stronger influence (𝜆 > 1) or negative influence (𝜆 < 0) of specific
observations.

The theoretical variogram model fitted to the data is used to derive
the weights from the spatial covariance structure. To obtain the weights
for an unobserved location, a set of equations called the kriging equa-
tion system (KES) is formulated [35]. Based on the assumption that the
prediction errors is zero and Eq. (6), the final kriging equations can be
written as:
{

∑𝑁
𝑗=1 𝜆𝑗𝛾

(

𝐬𝑖 − 𝐬𝑗
)

+ 𝛼 = 𝛾
(

𝐬𝑖 − 𝐬0
)

∑𝑁
𝑖=1 𝜆𝑖 = 1

(7)

where 𝛼 is the Lagrange multiplier for solving the KES. It is possible
to obtain the best linear and unbiased estimation by minimizing the
estimation variance subject to Eq. (6). Thus, kriging is often referred
to as the best linear unbiased estimator (BLUE). Finally, the optimized
estimator produces a smooth interpolation as the estimations close to
the observations are approaching the observation values very smoothly.
An example of interpolated SIM is illustrated in Fig. 4(d).

In this study, SIMs of different spatial resolutions are produced for
comparison as shown in Fig. 5. It enables a visual assessment of the
effects on the resulting interpolation. Noticeably, the SIMs of spatial
resolution higher than 0.5 km are visually identical, while the SIMs
of 1 km and 0.5 km resolutions have relatively coarse details and
uncealr contours. Therefore, we use a reasonable spatial resolution of
0.2 km for the interpolated SIMs considering both image quality and
computational cost of calculation. The forecasting model SIM frames
are then saved as images of a fixed dimension of 128 × 128 pixels.
Fig. 4 gives an intuitive idea of how satellite data are converted into
SIMs.
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Fig. 5. Effect of spatial resolution on interpolated SIMs.
3.3. Regional forecasts using SIMs

In this stage, a generative adversarial network is trained with the
SIM frames. Given an input sequence of SIMs 𝑴 𝑡−𝑛 = {𝑀𝑡−𝑛,𝑀𝑡−𝑛+1,… ,
𝑀𝑡}, the prediction process can be formulated as following:

𝑴̂ 𝑡+𝑚 = f(𝑴 𝑡−𝑛) (8)

where 𝑴̂ 𝑡+𝑚 = {𝑀̂𝑡+1, 𝑀̂𝑡+2,… , 𝑀̂𝑡+𝑚} ∈ R𝑝×𝑞×𝑚 is a vector of the
predicted SIMs and f (⋅) is the generative forecasting model. Each value
of a pixel on the predicted SIMs value indicates 1-to-𝑚-step ahead
CSI prediction at a specific location. The pixel values are further
matched with interpolated coordinates at corresponding locations and
transformed back to GHI values by multiplying the clear-sky GHI as an
inverse process of (1).

3.3.1. Forecasting model
Predicting next-step SIM frame requires an accurate representation

of the image evolution in terms of its content and dynamics. Generative
adversarial networks (GANs) are unsupervised generative models pro-
posed by [36] and have achieved great success in computer vision tasks
such as image generation and video prediction [37]. A typical GANs
consists of two models: a generative model (𝐺) and a discriminative
model (𝐷) that are both convolutional neural networks (CNNs) as
illustrated in Fig. 6. The generator maps random noise signals 𝑧 to
the data space following the distribution 𝐺(𝑧;𝛩𝑔) ∼ 𝑃𝑔 where 𝛩𝑔 is
generator weights. Thus, it can be trained to predict one or several
concatenated frames 𝑌 = {𝚢1,… , 𝚢𝑚} from a sequence of frames 𝑋 =
{𝚡1,… , 𝚡𝑛} by minimizing distance 𝓁𝑑 (e.g., with 𝑑 = 1 or 𝑑 = 2)
between the predicted frame and the true frame:

𝑑 (𝑋, 𝑌 ) = 𝓁𝑑 (𝐺(𝑋), 𝑌 ) = ‖ (𝐺(𝑋) − 𝑌 ) ‖𝑑𝑑 (9)

In the meanwhile, the discriminator learns to distinguish between the
generated and real image by estimating the probability that 𝑌 comes
from the dataset instead of being produced by the generator 𝐺(𝑋).

In this work, a multi-scale version of the generative model proposed
for video prediction [38] is used in a transfer learning manner to
predict SIMs of the next time step. It is designed to tackle the short-
range dependencies issue in convolutions due to the limited size of
kennels so that it learns internal representations at various scales. The
multi-scale generative model takes four different sizes of images as
inputs. The prediction at a lower scale is used as an input for the
network at a higher scale. We define 𝑢𝑘 to be the upscaling operator
towards size 𝑠𝑘 (i.e., 𝑠1 = 4×4, 𝑠2 = 8×8, 𝑠3 = 16×16 and 𝑠4 = 32×32).
The prediction of size 𝑠𝑘 can be obtained by recursively predicting from
lower size 𝑠𝑘−1 in a concatenated way, which is written by:

𝑌𝑘 = 𝐺𝑘(𝑋) = 𝑢𝑘(𝑌𝑘−1) + 𝐺′
𝑘
(

𝑋𝑘, 𝑢𝑘(𝑌𝑘−1)
)

(10)

where 𝑋𝑘 and 𝑌𝑘 denote the downscaled frames of size 𝑠𝑘 and 𝐺′
𝑘 is a

network that predicts a course frame of 𝑌𝑘 − 𝑢𝑘(𝑌𝑘−1) by learning from
𝑋𝑘. The architecture of the multi-scale model is shown in Fig. 6 and
Table 1.
6

3.3.2. Adversarial training
The objective of adversarial training is to train a discriminator 𝐷

that correctly classifies the predicted images and real images from the
dataset as stated in the previous section. The discriminator is also
a multi-scale convolutional network and takes a sequence of frames
where only the last frame can be either real or generated by 𝐺 and
the rest of the frames are always from the dataset. This allows the
discriminator to make use of temporal information and the generator to
produce SIMs that are temporally correlated to the input sequence. To
simplify the training process, the output of the discriminator is simply
expressed in two classes:
{

0 = 𝐷(𝐺(𝑋))
1 = 𝐷(𝑌 )

(11)

After specifying the training goal, we can respectively optimize
generator weights 𝛩𝑔 and discriminator weights 𝛩𝑑 by performing
Stochastic Gradient Descent (SGD) minimization with the following loss
functions. The adversarial loss function we use to train 𝐷 is:

𝐷
𝑎𝑑𝑣(𝑋, 𝑌 ) =

𝑁scale
∑

𝑘=1
𝓁𝑏𝑐𝑒

(

𝐷𝑘(𝑋𝑘, 𝑌𝑘), 1
)

+ 𝓁𝑏𝑐𝑒
(

𝐷𝑘(𝑋𝑘, 𝐺𝑘(𝑋)), 0
)

(12)

where 𝑁scale is the total number of image scales and 𝓁𝑏𝑐𝑒 is the binary
cross-entropy loss which is defined as:

𝓁𝑏𝑐𝑒(𝑌 , 𝑌 ) = −
∑

𝑖
𝑌𝑖 log

(

𝑌𝑖
)

+
(

1 − 𝑌𝑖
)

log
(

1 − 𝑌𝑖
)

(13)

where 𝑌𝑖 ⊂ {0, 1} and 𝑌𝑖 ∈ [0, 1]. During the training of 𝐷, the weights
of 𝐺 is keeping fixed. Similarly, while keeping 𝛩𝑑 fixed, we can learn
𝛩𝑔 from input sample (𝑋, 𝑌 ) by minimizing the adversarial loss:

𝐺
𝑎𝑑𝑣(𝑋, 𝑌 ) =

𝑁scales
∑

𝑘=1
𝐿𝑏𝑐𝑒

(

𝐷𝑘
(

𝑋𝑘, 𝐺𝑘
(

𝑋𝑘
))

, 1
)

(14)

However, minimizing this loss alone makes the generated frames 𝑌
can deceive 𝐷 as much as possible but can be dissimilar to real images
𝑌 . To alleviate this issue, penalization on distance 𝓁𝑑 is introduced
as an additional constraint to improve similarity by using 𝑑 loss.
In [38], the authors proposed a new loss function called Gradient Differ-
ence Loss (GDL), which directly penalizes gradient differences between
the prediction and the ground truth by considering neighboring pixel
intensity on each image, which is defined as:

𝑔𝑑𝑙(𝑌 , 𝑌 ) =
∑

𝑖,𝑗

|

|

|

|𝚢𝑖,𝑗 − 𝚢𝑖−1,𝑗 | − |𝚢̂𝑖,𝑗 − 𝚢̂𝑖−1,𝑗 |
|

|

|

𝛼

+ |

|

|

|𝚢𝑖,𝑗−1 − 𝚢𝑖,𝑗 | − |𝚢̂𝑖,𝑗−1 − 𝚢̂𝑖,𝑗 |
|

|

|

𝛼
(15)

where 𝛼 ≥ 1 and | ⋅ | is absolute function. Therefore, the final loss used
to train the generator is a combined loss composed of the previous
losses (9), (14), and (15):

(𝑋, 𝑌 ) = 𝜙adv𝐺
𝑎𝑑𝑣(𝑋, 𝑌 ) + 𝜙𝓁𝑝

𝑝(𝑋, 𝑌 ) + 𝜙𝑔𝑑𝑙𝑔𝑑𝑙(𝑋, 𝑌 ) (16)

with parameters 𝜙𝑎𝑑𝑣 = 0.05, 𝜙𝓁𝑝
= 1, and 𝜙𝑔𝑑𝑙 = 1 according to [38].

The first and third terms of (16) on the right side enhance the sharpness
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Fig. 6. Architecture of multi-scale GAN.
Table 1
The multi-scale generative adversarial model architecture.

Generator 𝐺1 𝐺2 𝐺3 𝐺4

No. of feature maps (128, 256, 128) (128, 256, 128) (128, 256, 512, 256, 128) (128, 256, 512, 256, 128)
Conv. kernel size (3, 3, 3, 3) (5, 3, 3, 5) (5, 3, 3, 3, 5) (7, 5, 5, 5, 5, 7)

Discriminator 𝐷1 𝐷2 𝐷3 𝐷4

No. of feature maps (64) (64, 128, 128) (128, 256, 256) (128, 256, 512, 128)
Conv. kernel size (3) (3, 3, 3) (5, 5, 5) (7, 7, 5, 5)
FC layer size (512,256) (1024,512) (1024,512) (1024,512)
of predicted images and the second term increases the similarity to the
ground truth.

Since we take advantage of the transfer learning technique, we use
a pre-trained multi-scale generative network and fine-tune it on our
own datasets of randomly cropped 32 × 32 patches of input image
sequences. To ensure most patches show enough movement, we remove
the SIMs under clear and overcast conditions that are visually consistent
over time, but the dataset size can be still greatly augmented by
cropping the frames such that we have sufficient data to avoid over-
fitting. The reason for using 32 × 32 patches is that larger size will
lead to the out-of-memory issue because the output size of the fully-
connected (FC) layers of the discriminator depends on the input image
size and can blow up very quickly. For example, for an input image
size of 64 × 64, going from 128 feature maps to an FC layer with 512
nodes, we need a connection with 64 ∗ 64 ∗ 128 ∗ 512 = 268, 435, 456
weights. However, we only need the discriminator for training, and the
generator network is fully convolutional, so we can test the weights
over images of any size. We set the learning rate 𝜌𝐷 to 0.02 to train
the discriminator, and set 𝜌𝐺 start at 0.04 and is reduced to 0.005 over
time to train the generator.
7

3.4. Irradiance-to-power conversion

Finally, the predicted SIMs are used for PV power estimation. To this
end, the values on the predicted SIMs are assigned with corresponding
geographical coordinates such that the predictions at any locations
can be retrieved from the map. Then the extracted CSI values are
transformed back to GHI values by multiplying the clear-sky GHI as
a inverse process in Eq. (1):

𝐺𝐻𝐼prediction = 𝐶𝑆𝐼prediction × 𝐺𝐻𝐼clear-sky (17)

For validation, PV power predictions are required. As the output of the
above model is solar irradiance, the GHI forecasts should be further
converted to PV power data with a irradiance-to-power conversion
model. A direct conversion from irradiance to power can be found
in [39], which considers PV system size and ratio of PV nominal power
to the standard irradiance.

𝑃 (𝑠) = 𝐾
(
√

𝑠∕(2𝜋 ⋅ 0.02))𝑠 + 1
⋅ 𝐺(𝑠) (18)

where 𝑃 (𝑠) and 𝐺(𝑠) respectively denote the PV power and GHI data
in the frequency domain, 𝐾 is the ratio of PV nominal power to the
standard irradiance of 1000 W∕m2, and 𝑆 is PV system area. Eq. (18)
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Table 2
Irradiance-to-power model parameters.

Parameters System AC/DC Tilt Azimuth Inverter System Array
capacity ratio angle angle efficiency loss type

Values * 1.1 25◦ 26◦ 96% 10.1% Fixed

indicates that the variability becomes inversely proportional to the
square root of PV system area.

In this case, the PV systems are distributed systems of small areas.
They are more vulnerable to small irradiance change than large-scale
PV systems. Besides, due to the geographic dispersion in practical PV
systems, the diversity in irradiance variability can be greatly relieved
in PV power profiles. Thus, this model could result in larger errors for
the distributed PV systems.

To make more accurate forecasts, we use National Renewable En-
ergy Laboratory’s System Advisor Model (SAM) accounting for various
parameters. It is implemented by using PySAM, a Python interface for
the models found in SAM simulation core. Due to the lack of system
specifications, we use fixed values for AC/DC ratio, tile angle, inverter
efficiency, system loss, and array type by considering both simplicity
and availability. For the azimuth angle, we assume that the PV systems
are oriented at a tilt angle that is equal to the location’s latitude for the
maximum possible energy generation. According to a study conducted
by the University of Queensland, the ideal value for rooftop solar panels
in Brisbane is 26◦, facing North. These approximation only affects the
total amount of PV power yield, but has little impact on how PV power
output changes as it is dominated by the solar irradiance variation. The
specific model parameters are shown in Table 2.

4. Experiments

To fully validate the effectiveness of the proposed method, we carry
out three experiments on SIMs prediction, solar irradiance forecasting,
and PV out estimation. First, we use the generative model to fore-
cast regional solar irradiance by producing SIMs from a sequence of
chronological frames. Then, we evaluate the forecasting performance
by comparing the predicted SIMs with the predictions from other
benchmarks at observed locations. Finally, we verify the effect of our
method by estimating the output of 30 BTM PV systems at unobserved
locations.

4.1. Prediction of SIMs

In this section, we predict the next-step SIMs by using the multi-
scale generative model with a sequence of five input frames. We
compare the results with the frames generated without using adver-
sarial training and the last frame of the input sequence. The idea of
using the copy of the last input is equivalent to the persistent model,
but for the entire region of interest. The non-adversarial model can be
regarded as a fully convolutional network of the aim to investigate the
contribution of the adversarial loss in SIM prediction tasks.

To evaluate the quality of the predicted SIMs, we first compute the
Peak Signal to Noise Ratio (PSNR) between the true frame 𝑌 and the
prediction 𝑌 :

PSNR(𝑌 , 𝑌 ) = 10 log10
max2

𝑌
1
𝑁

∑𝑁
𝑖=0

(

𝑌𝑖 − 𝑌𝑖
)2

(19)

where max𝑌 is the maximum possible pixel value of the image and
equals to 1 since the images are normalized. A larger PSNR score
indicates a greater similarity between two frames.

Besides, we measure the sharpness difference (SD) between 𝑌 and
he prediction 𝑌 based on the difference of gradients between two
8

Table 3
Comparison of the accuracy of the predicted SIMs on
the test set.

PSNR SD

Adversarial 18.6 0.81
Non-adversarial 16.3 0.67
Last input 17.9 0.86

images, which is a commonly applied evaluation method for image
generation and is defined as:

SD = 10 log10
max2

𝑌
1
𝑁

(

∑

𝑖
∑

𝑗 |
(

∇𝑖𝑌 + ∇𝑗𝑌
)

− (∇𝑖𝑌 + ∇𝑗𝑌 )|
) (20)

here ∇𝑖𝑌 = |

|

|

𝑌𝑖,𝑗 − 𝑌𝑖−1,𝑗
|

|

|

and ∇𝑗𝑌 = |

|

|

𝑌𝑖,𝑗 − 𝑌𝑖,𝑗−1
|

|

|

. A larger sharpness
ifference means better quality of the prediction.

The quantitative measures on the test set are given in Table 3.
he results indicate that the adversarial model outperforms the non-
dversarial model in terms of both PSNR and SD, and achieves the
ighest PSNR score of 18.6. However, its SD score is slightly lower than
hat of the copy of the last frame in the input sequence because the
harpness of the adversarial predictions is deteriorated by introducing
he 𝓁1 norm that uses median values of individual pixel predictions.

Fig. 7 demonstrates the predicted SIMs of both adversarial and non-
dversarial models on four different days. We note that the prediction
f the adversarial model is more visually similar to the ground truth in
he moving areas. As expected, the image similarity score is higher, but
he sharpness score is a little lower than the last input frame due to the
eteriorated contours of moving areas. In contrast, the non-adversarial
esults appear more static and blurred due to the lack of an adversarial
raining process, which results in further deteriorated PSNR and SD
cores.

.2. Solar irradiance forecasting at observed locations

In this section, we compare the effectiveness of our forecasting
ethod at observed locations, meaning that the historical solar irradi-

nce data from 10 random locations out of all data points (red dots
n Fig. 2) are used for validation. In addition to the results of the
dversarial and non-adversarial models, we also introduce two statistic
odels, namely least absolute shrinkage and selection operator (Lasso),
xtreme Gradient Boosting (XGBoost), and a machine learning model-
ong short-term memory (LSTM) as the benchmark models. They are
xclusively trained and validated on the same data at the selected 10
ocations. The Lasso and XGBoost models are available in a scikit-learn
achine learning library in Python and can be easily trained with a

mall amount of data to achieve accurate forecasts.
To evaluate forecasting performance, we use the smart persistence

odel as a baseline reference model. It is based on the assumption that
he future irradiance will remain unchanged over the next forecast hori-
on and achieve high accuracy in low-variation periods of irradiance.
he prediction of smart persistence is simply equal to:

𝑦̂𝑡+𝜏 = 𝑘(cs)
𝑡 ⋅ 𝐼 (cs)

𝑡+𝜏 (21)

here 𝑘(cs)
𝑡 is CSI, 𝐼 (cs)

𝑡+𝜏 is clear-sky irradiance at next horizon 𝑡 + 𝜏.
We consider three commonly used error metrics in this work to eval-

ate solar irradiance and PV power predictions, namely, normalized
ean absolute error (nMAE), normalized mean bias error (nMBE), and
ormalized root mean square error (nRMSE). They are given by:

MAE = 1
𝑛

𝑛
∑

𝑡=1
|𝑦𝑡 − 𝑦̂𝑡|∕𝑦̄ (22)

nMBE = 1
𝑛
∑

(𝑦𝑡 − 𝑦̂𝑡)∕𝑦̄ (23)

𝑛 𝑡=1
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Fig. 7. Predictions of SIMs generated by the adversarial and non-adversarial models on different days.
Fig. 8. Scatter plot of the predictions produced by different forecasting models. The results show the average values of the 10 selected observed points.
Table 4
Solar irradiance forecasting results of different models at 10 observed points on the
test set.

nMAE [%] nMBE [%] nRMSE [%] FS [%]

Smart Pers. 14.2 ± 0.5 0.1 ± 0.0 26.4 ± 1.2 0.0
Lasso 12.3 ± 0.3 0.2 ± 0.1 23.5 ± 0.5 11.8 ± 2.5
XGBoost 12.1 ± 0.2 −1.2 ± 0.1 22.9 ± 0.2 13.3 ± 2.8
LSTM 13.3 ± 1.5 1.2 ± 0.8 24.2 ± 1.5 8.3 ± 3.8
Adversarial 13.8 ± 1.3 0.3 ± 0.9 24.5 ± 1.1 7.2 ± 3.2
Non-adversarial 19.5 ± 3.2 −12.4 ± 1.6 35.2 ± 3.4 −33.2 ± 10.3

nRMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1
(𝑦𝑡 − 𝑦̂𝑡)2∕𝑦̄ (24)

where 𝑛 is the number of predictions, 𝑦𝑡, 𝑦̂𝑡, and 𝑦̄ are measured,
predicted and mean values at time 𝑡, respectively.

Besides, forecast skill (SF) is used to measure the improvement of a
forecasting model over the reference model:

skill = 1 − nRMSE
nRMSEp

(25)

where nRMSEp is the nRMSE of the smart persistence.
The forecasting results shown in Table 4, which are represented

as ‘‘mean±standard deviation’’ for all 10 locations. It can be seen in
general, the statistic models Lasso and XGBoost outperform the others
by achieving high forecast skills of 11.8 ± 2.5% and 13.3 ± 2.8% and
having lower nMAE, nMBE, and nRMSE values. The forecast skill of
LSTM is 8.3 ± 3.8%, which is lower than that of the statistic models.
This is probably because LSTM requires more training data than the
Lasso and XGBoost and the training process is more complex. Regarding
the GAN, it has a comparable forecasting accuracy with LSTM with
a forecast skill of 7.2 ± 3.2% as well as other metrics. However, it
9

shows lower standard deviations than LSTM, which indicates more
stable performance at all the selected locations. As for the model
without adversarial training, the model is equivalent to a feed-forward
fully-connected network. It is found that its forecasting performance
is greatly reduced due to the lower similarity and sharpness of the
predicted SIMs.

Fig. 8 compares the forecasting results generated by different fore-
casting models. Each subplot shows the average values for the 10
selected observed points. The red line means the predictions are equal
to the measurements. It is observed that the predictions of Lasso and
XGBoost are more concentrated with few outliers, whereas the LSTM
and GAN have more predictions that are far from the equal line, which
indicates larger forecasting errors and deteriorated accuracy. As for
the non-adversarial model, it shows an obvious bias below the equal
line meaning that the predictions are generally lower than the true
values and produce a low nMBE of −10.4 ± 1.6%. Fig. 9 demonstrates
the predicted solar variation of different forecasting models on 22
December 2020 at an observed point.

4.3. PV power forecasting at unobserved locations

In this section, we evaluate the forecasting framework by estimating
power generations of distributed PV systems at unobserved locations.
We select 30 rooftop PV systems in the target region for validation
purposes and assume that the historical PV output data is only available
to the owners due to privacy and security concerns. As a result, these
PV systems are operating behind-the-meter and their power generations
are not monitored by the utilities.

One possible solution is to utilize observed data to infer the be-
haviors of the neighboring PV systems since they are spatio-temporally
correlated and the outputs are likely to have similar patterns as plotted
in Fig. 10. The relationship between the neighboring systems 𝑝(𝑖) and
𝑥
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a

Fig. 9. Predictions of solar irradiance of different forecasting methods at an observed points on 22 December, 2020.
Fig. 10. Normalized power output curves of the 30 selected PV systems at unobserved locations 1st December, 2020. The red curve has the highest correlation with the others
nd is used as a reference for estimation.
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Fig. 11. The time lag between PV-22 and PV-25 on 2020 December 1. The PV output
time series are shown in the top figure and the cross-correlation function (CCF) is
shown below.
10

a

𝑝(𝑖)𝑦 can be measured by correlation coefficients. As an example, Fig. 11
shows the cross correlation between two PV systems PV-22 and PV-25
(about 3.42 km apart) on 2020 December 1. A maximum correlation
of 0.776 is observed at a time lag +20 min. This indicates that the
PV power variation at PV-22 might cause similar variations at PV-25
20 min later on that day. Therefore, we compute the Pearson Corre-
lation Coefficient (PCC) for all PV systems pairs to find the maximum
correlation coefficient, which is defined as follows:

𝛾 =
∑

(𝑝(𝑖)𝑥 − 𝑝̄𝑥)(𝑝
(𝑖)
𝑦 − 𝑝̄𝑦)

√

∑

(𝑝(𝑖)𝑥 − 𝑝̄𝑥)2(𝑝
(𝑖)
𝑦 − 𝑝̄𝑦)2

(26)

Fig. 12 illustrates the calculated PCCs for each PV site. It is seen
hat most systems are correlated to each other, but some of them have
ow correlation due to a variety of reasons such as different panel
pecifications, shading, and even dust accumulation. For example, PV-
0 is geographically close to PV-27, but they have a lower PCC of 0.87
ompared to that of 0.9 between PV-30 and PV-18 even though they
how a longer distance. In this study, we choose PV-17 to be observed
s a best-case reference system since it has the highest PCC of 0.873.

higher correlation indicates a higher possibility of similarity. As a
esult, we can simply estimate PV outputs at other locations based on
he approximation that they have the same patterns as PV-17 (denoted
s a shift method).
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Table 5
The PV power forecasting results by different forecasting models.

Site Metric [%] Pers. Lasso XGBoost LSTM Shift GAN Site Metric [%] Pers. Lasso XGBoost LSTM Shift GAN

PV-1

nMAE 12.34 11.42 11.23 12.513 15.69 11.74

PV-2

nMAE 11.95 11.03 10.95 13.80 16.23 12.03
nMBE 0.0 0.35 −0.12 −0.65 −12.42 0.55 nMBE 0.0 0.28 0.15 −2.38 −5.31 1.49
nRMSE 24.21 22.92 23.17 23.84 27.32 22.64 nRMSE 25.59 23.10 23.42 24.56 27.35 22.87
Skill – 5.33 4.30 1.53 −12.85 6.48 Skill – 9.73 8.48 4.03 −6.88 10.63

PV-3

nMAE 14.23 12.59 12.72 13.89 17.83 12.85

PV-4

nMAE 13.56 12.21 12.04 11.94 15.31 12.74
nMBE 0.0 0.21 −0.35 −3.25 5.29 2.41 nMBE 0.0 0.53 −0.97 −1.04 −6.92 1.53
nRMSE 28.32 27.41 27.29 28.70 31.04 25.75 nRMSE 26.94 25.83 25.54 26.12 27.71 24.66
Skill – 3.21 3.64 −1.34 −9.60 9.04 Skill – 4.12 5.20 1.56 −2.86 8.52

PV-5

nMAE 11.79 10.95 10.82 11.13 14.43 11.34

PV-6

nMAE 11.43 10.72 10.28 10.93 14.21 11.03
nMBE 0.0 0.32 −0.65 −2.34 −6.42 2.26 nMBE 0.0 0.05 0.59 1.42 −3.42 1.48
nRMSE 25.94 25.41 24.89 26.31 28.74 24.28 nRMSE 25.22 23.89 23.62 26.17 27.12 22.37
Skill – 2.04 4.05 −3.77 −10.79 6.40 Skill – 5.24 6.34 4.52 −7.53 11.31

PV-7

nMAE 12.87 11.16 11.05 12.53 15.43 13.29

PV-8

nMAE 12.24 11.39 10.94 12.84 16.21 11.85
nMBE 0.0 0.43 −0.31 −1.21 −10.20 −0.89 nMBE 0.0 0.14 −0.23 −1.47 3.39 1.32
nRMSE 25.32 24.93 24.57 24.89 27.94 24.12 nRMSE 25.85 25.46 24.98 26.32 29.17 24.21
Skill – 1.54 2.96 1.70 −10.35 4.74 Skill – .51 3.37 −1.82 −12.84 6.34

PV-9

nMAE 12.76 12.02 11.75 11.93 14.84 12.42

PV-10

nMAE 13.74 13.49 13.04 13.42 15.31 12.98
nMBE 0.0 0.24 −0.52 −2.74 −6.13 2.43 nMBE 0.0 0.67 0.94 −3.92 −9.28 1.89
nRMSE 26.23 24.48 24.67 27.53 29.31 23.88 nRMSE 27.35 26.92 26.39 28.42 31.17 26.47
Skill – 6.67 5.96 −4.96 −11.74 8.96 Skill – 1.57 3.51 −3.91 −13.97 3.22
Fig. 12. Correlation matrix of PV outputs.

Table 6
PV power forecasting results at unobserved locations.

nMAE [%] nMBE [%] nRMSE [%] FS [%]

Pers. 11.61 ± 0.58 0.0 ± 0.0 22.97 ± 1.45 0.0
Lasso 10.83 ± 1.34 0.89 ± 0.33 22.21 ± 0.63 3.31 ± 1.61
XGBoost 10.68 ± 1.26 0.81 ± 0.31 22.14 ± 0.51 3.62 ± 1.52
LSTM 12.19 ± 1.22 −0.42 ± 1.13 24.31 ± 1.56 −3.87 ± 2.81
Shift 15.72 ± 2.91 3.71 ± 1.68 25.38 ± 2.42 −10.49 ± 5.42
Adversarial 10.87 ± 0.92 1.54 ± 1.26 20.46 ± 0.75 10.93 ± 2.35

In contrast, forecasting for individual PV systems is relatively
straightforward because it can be achieved by training any time-series
forecasting models on the user’s historical power generation. Therefore,
we use the previous models (i.e., Lasso, XGBoost, and LSTM) for
benchmarking based on the assumption that the models are trained by
the PV system owners. The non-adversarial model is not used in this
case since it has the worst performance.

Table 5 shows the PV power forecasting results of each individual
PV system. Due to page limit, we only include the results of 10
11
PV systems for better illustration. Table 6 summarizes the PV power
forecasting results of all PV systems in a form of ‘‘mean±std’’. The
statistical models generally show comparable accuracy with forecast
skill of 3.31±1.61 and 3.62±1.52. However, the LSTM and shift method
give unsatisfactory results which are worse than the simple persistence
model, especially for large ramp events. On the contrary, the proposed
approach outperforms the others showing minimal forecasting errors
and the highest forecast skill of 10.93 ± 2.35. Fig. 13 shows nMAE,
nMBE, nRMSE, and forecast skill of different methods in a box plot at 30
PV sites. The values of each error for a PV system are scatter-plotted for
better visualization. It is found that the proposed method can predict
PV power output at unobserved locations with the highest accuracy.

5. Conclusion

This paper is mainly concerned with producing regional forecasts of
solar irradiance, as might be required by those studies for solar energy
assessment in high-penetration areas. In this article, we proposed a
generative approach to forecast solar irradiance variation of an entire
region by generating SIMs with a multi-scale generative adversarial
network (GAN). Moreover, we introduce SIMs for solar forecasting for
the first time, which allow for the forecasts of solar irradiance in a
flexible geographical and give an intuitive view of how solar irradiance
varies over time. Through case studies against benchmarks and com-
monly used models for solar forecasting, the superiority of the proposed
approach can be confirmed. More specifically, this method achieves
competing forecasting accuracy at single locations, while considering
regional-level solar irradiance variation of the interested area. Besides,
the proposed method outperforms the benchmarks in estimating out-
puts of the BTM PV systems with the highest forecast skill of 10.93 ±
2.35% at unobserved locations. Thus, it can be deemed useful when
assessing solar resources, making decisions of power system control,
and designing electricity market.

The main challenge preventing this approach from practical deploy-
ment is the unavailability of real-time satellite data. Even thought the
data is available, the knowledge gap of transforming the satellite data
to ground solar irradiance still exists. In this study, we only consider
one-step ahead forecasts as the forecast horizon is limited by the
temporal resolution of input data. However, long-sequence predictions
are preferred in the applications such as PV ramp-rate control for better
performance. In future work, we will continue to explore regional solar
forecasting methods with using state-of-the-art models and various
data sources, consider multiple forecast horizons with finer temporal
resolution, and potentially integrate it to real-world applications.
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Fig. 13. Box plot of PV power forecasting errors of different methods at the 30 unobserved locations: (a) nMAE, (b) nMBE, (c) nRMSE, and (d) Skill. The individual forecasting
errors of each model are plotted with different colors.
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