143 research outputs found

    The rise of pinnacle reefs : a step change in marine evolution triggered by perturbation of the global carbon cycle

    Get PDF
    The first appearance of pinnacle reef tracts, composed of hundreds to thousands of localized biogenic structures protruding tens to hundreds of meters above the surrounding mid-Silurian seafloor, represents a step change in the evolution of the marine biosphere. This change in seafloor morphology opened a host of new ecological niches that served as "evolutionary cradles" for organism diversification. However, the exact timing and driver's of this event remain poorly understood. These uncertainties remain, in large part, due to a paucity of index fossils in the reef facies, the difficulty of correlating between the offshore pinnacle reefs and more temporally well-constrained shallow marine fades, and cryptic unconformities that separate amalgamated reefs. Here we use delta C-13(carb) stratigraphy within a sequence stratigraphic framework to unravel these complex relationships and constrain the origination of Silurian pinnacle reef tracts in the North American midcontinent to near the Pt. celloni Superzone-Pt. am. amorphognathoides Zonal Group boundary of the mid-Telychian Stage. In addition, we identify a striking relationship between pulses of reef development and changes in global delta C-13(carb) values and sea level. Viewed through this new perspective, we correlate prolific periods of reef development with short-lived carbon isotope (delta C-13(carb)) excursions and eustatic sea level change that, ultimately, reflect perturbations to the global carbon cycle. From changes in the dominance of microbial reefs of the Cambrian to metazoan colonization of reefs in the Middle Ordovician, through the subsequent collapse of metazoan diversity with the Late Ordovician mass extinction, and the first appearance of early Silurian (Llandovery) pinnacle reef tracts and their proliferation during the late Silurian (Wenlock-Pridoli) and Devonian, major reef formation intervals increasingly coincide with delta C-13(carb) excursions. These patterns suggest that Paleozoic reef evolution was the product of environmental forcing by perturbations of the global carbon cycle

    Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction

    Get PDF
    Glacial episodes have been linked to Ordovician–Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging ‘oceanic anoxic event’ models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician–Silurian palaeobiological events

    Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Get PDF
    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires

    Upper Ordovician hardgrounds – from localized surfaces to global biogeochemical events

    Get PDF
    Upper Ordovician hardgrounds display a spectrum of complexity reflecting a range of local to global-scale processes. Hardgrounds are cemented seafloor surfaces typically marked by the presence of encrusting taxa and borings. Many hardgrounds show evidence for successive episodes of colonization by hard substrate specialists and are associated with localized evidence of seafloor erosion such as overhangs and reworked concretions. They commonly show trace amounts of pyrite and dolomite cements indicating an association with sulfate reduction. The most widespread hardgrounds are highly complex and unravelling their history provides insights into global biogeochemical events. The Curdsville and Kirkfield hardgrounds in the Appalachian Basin (Kentucky and Ontario) represent relatively simple end members of the hardground spectrum. They covered 10s to 100s km2 and formed relatively quickly during the early Katian. They display both planar to subplanar and hummocky to topographically complex surfaces (cm-scale) and contain highly diverse encrusting echinoderm faunas. Study of these surfaces yields important insights into the evolutionary history of encrusting communities. By contrast, the slightly younger hardground at the top of the Galena Group (Ka1) is a surface that is present throughout most of the Midcontinent Basin (>7.5 à 105km2). It is an example of a highly complex surface that was repeatedly modified by erosion and mineralization. Near the eastern margin of the basin in Indiana, the capping Galena hardground is pinnacled with cavity-filling sharpstone clasts, phosphate grains and bored crusts, iron ooids, and pyritic impregnated surfaces. It is onlapped by graptolitic shales of the Kope Formation (Fm) (Ka1) indicating an unconformity of approximately 1 m.y. To the west, in Illinois, the Kope Fm is erosionally truncated and the hardground is directly overlain by graptolitic shales of the Waynesville Fm (Ka3), where the unconformity expands to nearly 4 m.y. Toward Iowa, the hardground is onlapped by meters of phosphorite. Taken together, these observations reveal that the capping Galena Group hardground reflects a complicated history of repeated subaerial exposure, karsting, and marine flooding by a dysoxic to anoxic water mass with fluctuating redox conditions, similar to the age equivalent hardground at the base of the Fjäcka Shale in the Baltic Basin. Thus, hardground studies provide important insights for resolving the temporal continuity of the Upper Ordovician rock record and unravelling processes that controlled carbonate precipitation and dissolution and the evolution of sea floor communities. Some simple hardgrounds may have formed through random exhumation of cemented sediments on the sea floor through the effects of storm scour. However, their clustering into certain portions of the Upper Ordovician suggests that processes that affected sea water chemistry may also be involved. The most complex surfaces reflect major environmental perturbations with large amplitude sea level oscillations and redox changes that in some cases generated rare-earth enriched phosphorites

    Can facies act as a chronostratigraphical tool?

    Get PDF
    Results demonstrate that the Appalachian ironstones seem to reflect the same microbially-mediated iron mineralization already documented in the Carnic Alps

    Upper Ordovician chronostratigraphic correlation between the Appalachian and Midcontinent basins

    Get PDF
    Study of a subsurface core (named F688) from northern Indiana provides integrated data sets linking Katian chronostratigraphic records of the Appalachian and Midcontinent basins. The F688 core shows a variety of shallow- and deep-water facies containing numerous, well-preserved and zonally significant fossil species and diagnostic chemostratigraphic patterns. The succession belonging to the Cincinnatian Regional Stage in the F688 core is 210 m thick. Detailed benchtop examination of the succession revealed several phosphatic intervals, rich brachiopod faunas, multiple graptolitic horizons, and at least two tephras. Elemental analysis was conducted at 60 cm spacing quantifying lithofacies composition. Based on these results, the succession was assigned to six previously defined lithostratigraphic units (Kope, Waynesville, Liberty, Whitewater, Elkhorn, and Fort Atkinson formations). This lithostratigraphic succession shares components with both the Appalachian and Midcontinent basins, suggesting deposition near their shared margin. Twenty samples yielded abundant, well-preserved, low-diversity conodont assemblages with long-ranging taxa that clearly demarcate the position of the OrdovicianâSilurian boundary at the top of the succession in the core. More than fifty palynologic samples, targeting graptolite-bearing intervals, were processed for chitinozoans and produced important new insights. The Kope Formation contains the chitinozoan species Belonechitina kjellstromi, Hercochitina downiei, and Clathrochitina sp. nov., co-occurring with a graptolite assemblage suggestive of the Geniculograptus pygmaeus Zone. Samples from the overlying Waynesville Formation produced graptolites indicative of the upper G. pygmaeus to Paraorthograptus manitoulinensis zones co-occurring with the long-ranging chitinozoan species Belonechitina micracantha and Plectochitina spongiosa as well as several new species of the genera Tanuchitina and Hercochitina. Higher in the core, the Liberty, Whitewater, Elkhorn, and Fort Atkinson formations yielded chitinozoan species characteristic of the upper Katian biozones of Anticosti Island and Nevada, such as Tanuchitina anticostiensis, Hercochitina longi, and Eisenackitina ripae. Results of δ13Ccarb analysis reveal partial preservation of the Kope, Waynesville, and Elkhorn excursions. A tephra in the rising limb of the Waynesville Excursion yielded needle-shaped clear zircons that will provide a high-precision U-Pb age. The Fort Atkinson Formation is overlain by the Brassfield Formation containing Silurian conodonts and δ13Ccarb values suggesting an Aeronian age. Chronostratigraphic data from our study of the F688 core resolves longstanding uncertainty about correlations between strata of Katian Age in the Appalachian and Midcontinent basins. Integration of core F688 with our other regional chronostratigraphic data in the Midcontinent Basin demonstrates that the Fort Atkinson Formation of the Indiana and Illinois subsurface is age equivalent to the Fernvale Formation of Tennessee, Arkansas, and Oklahoma. Across this area, the Fernvale is overlain by graptolitic shales of the uppermost P. manitoulinensis to basal Dicellograptus complanatus graptolite zones. By contrast, the type Fort Atkinson Formation of Iowa is interpreted to occur completely within the younger D. complanatus Zone. These regional correlations taken as a whole suggest that the uppermost Katian (all of Ka4) and all but the uppermost Hirnantian are missing throughout much of the Appalachian Basin. By contrast, the Midcontinent Basin contains a much more complete upper Katian and Hirnantian succession. Our comprehensive approach is correcting temporal miscorrelation and providing robust chronostratigraphic context for study of biogeochemical events, which will further enable us to disentangle proxy data and identify the processes that drove the Katian diversity peak and culminated in the Late Ordovician mass extinction

    The late Katian Elkhorn event: precursor to the Late Ordovician mass extinction

    Get PDF
    The late Katian Elkhorn event is a biogeochemical perturbation preceding the Late Ordovician mass extinction (LOME) with an exceptional record in the United States (U.S.). Results of our recent studies in this interval allow revised temporal ordering to strata across multiple basins providing insights into the magnitude of environmental disturbance and associated processes and feedbacks. The record of the Elkhorn event spans portions of the Appalachian and Midcontinent basins in the eastern U.S. and the Williston Basin and Cordilleran margin in the west. Our work focuses heavily on the Midcontinent Basin in particular, as it shares many characteristics of size, tectonic setting, and lithofacies with the Baltic Basin, providing the potential for resolving global signatures of the event. In its type-area, the Cincinnatian Series ends with the Elkhorn event. The succession is marked by shallowing from subtidal to marginal marine facies, capped by a karstic sequence boundary. Our new conodont data demonstrate that an overlying white to pink crinoidal grainstone package, previously assigned to the basal Silurian âwhiteâ Brassfield Formation near the Ohio-Indiana state line, is in fact Upper Ordovician. Further, δ13Ccarb values in this unit are elevated, in line with later phases of the Elkhorn event (2â° more positive than reported Rhuddanian values). These findings support a correlation of the grainstone interval with the Fernvale Formation of central Tennessee. To the east, much of the northern Appalachian Basin was overfilled with widespread marginal marine to terrestrial red beds by the onset of the Elkhorn event, while the Midcontinent Basin to the west remained relatively sediment starved. In the southern Midcontinent, the mid-Elkhorn event sequence boundary was onlapped by ironstone deposition (lower Fernvale Formation). The ironstones are overlain by sparry and hematitic grainstones with localized bioherms. In Arkansas, where the Fernvale is thickest (>30 m), the sparry phase gives way upward to manganese carbonates and bioherms. Across the region, the Fernvale is, in turn, cut by a sequence boundary, suggesting a yet higher Katian sequence, and is perforated by paleokarst pockets that are filled and overlain by upper Katian (Ka4) sediments. This sequence boundary is onlapped by black shales and the thickest (>10 m) phosphorite of the Ordovician at the end of the Elkhorn event. Previous studies have suggested age equivalence of the Elkhorn and Paroveja δ13Ccarb excursions in Laurentia and Baltica. Despite the attraction of aligning the latest Richmondian and Pirgu regional stages, our data sets demonstrate that this is a miscorrelation. Critical to this revision are new integrated biostratigraphic and chemostratigraphic data sets in a transect from the margin of the Appalachian Basin into the Midcontinent Basin. The new data reveal that the Elkhorn Shale and Fernvale Formation are overlain by the Brainard and laterally equivalent Sylvan, and Mannie shales. These shale successions contain graptolites of the complanatusand pacificus zones. Thus, the Elkhorn event occurred in the latest manitoulinensis Zone, suggesting correlation with the Baltic Moe δ13Ccarb excursion. Our extensive new data sets provide regional chronostratigraphic correlation of strata deposited during the Elkhorn event. When temporally ordered, these records provide evidence for high amplitude sea level oscillations, major redox fluctuations, and reef pulses that demonstrate the waxing and waning of continental ice sheets on Gondwana and the spread of oceanic anoxia only a few million years before the LOME. These findings further call into question traditional models of rapid glaciation during a long-lived greenhouse state as the sole driver of the LOME and emphasize the need for new integrated Upper Ordovician research initiatives to better characterize Katian events

    Ore-forming processes of the daqiao epizonal orogenic gold deposit, west qinling orogen, China: Constraints from textures, trace elements, and sulfur isotopes of pyrite and marcasite, and raman spectroscopy of carbonaceous material

    Get PDF
    The Daqiao gold deposit is hosted in organic-rich Triassic pumpellyite-actinolite facies metamorphosed turbidites in the West Qinling orogen, central China. Gold mineralization is characterized by high-grade hydraulic breccias (B and C ores) that overprint an earlier tectonic breccia (A ore). A complex paragenesis is defined by four sulfide stages: S1 diagenetic preore pyrite (py), S2 hydrothermal early ore disseminated pyrite and marcasite (mc), S3 main ore pyrite and marcasite aggregates, and S4 late ore coarse-grained marcasite with minor pyrite and stibnite. However, multiple generations of pyrite and marcasite may develop within one individual stage. Ore-related hydrothermal alteration is dominated by intensive silicification, sulfidation, sericitization, and generally distal minor carbonatization. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element analyses show that the stage S1 py1 from the shale interlayers within turbidites contains low gold contents (mean of 0.05 ppm) and other trace elements (Mn, Co, Ni, Cu, Mo, Bi, and Pb), indicating an anoxic to euxinic sedimentary environment. Stage S2 contributed only minimally to the gold endowment with relatively low gold in various sulfides including py2 (mean of 0.09 ppm), py3 (0.84 ppm) to py4 (0.70 ppm), along with mc1 (0.02 ppm) and mc2 (0.14 ppm). Most of the gold was deposited in stage S3, which formed rapidly crystallized, irregular (e.g., framboids, colloform and cyclic zonation) cement-hosted py5a (mean of 27.35 ppm), py5b (9.71 ppm), and mc3 (5.94 ppm) during repeated hydraulic fracturing. Other trace elements (e.g., Ag, As, Sb, Hg, Tl, and W) are also significantly enriched in the main ore-stage pyrite and marcasite. Little or no gold is detected in the S4 py6 and mc4. Sulfur isotopes determined from in situ LA-multicollector (MC)-ICP-MS analyses of hydrothermal pyrite and marcasite from the Daqiao deposit vary significantly from –31.3 to 22.0 (d34S values) but fall mostly between –10 to 10 and provide important information on the source and evolution of sulfur and of the ore-forming fluids. The results show that S2 ore fluids (mean d34Ssulfide = –0.8 to 5.2) were most likely derived from deep-seated Paleozoic carbonaceous sediments during regional metamorphism associated with orogenesis of the West Qinling orogen. Main ore S3 fluids (mean d34Ssulfide = –9.7 to –6.0) are relatively depleted in34S relative to those of S2, presumably due to fluid oxidation associated with hydraulic fracturing caused by the overpressurized fluids. The textural, chemical, and isotopic data indicate two distinct gold-introducing episodes at Daqiao, forming sulfide disseminations during early ore S2 and cement-hosted sulfide aggregates during main ore S3. The S2 mineralization took place in a tectonic breccia beneath low-permeability shale seals that capped the flow of deep-seated metamorphic fluids, facilitating reaction with preexisting carbonaceous material and the host turbidites to form sulfide disseminations and pervasive silicification. Raman spectroscopy analysis suggests that carbonaceous material in the ores is poorly crystallized, with low maturity, giving estimated temperatures of 283° to 355°C that are much higher than those of the ore fluids (100°–240°C). This temperature difference indicates an in situ sedimentary origin modified by the regional pumpellyite-actinolite facies metamorphism for the carbonaceous material in the host rocks, rather than a hydrothermal origin. In S3, continuous flux of hydrothermal fluids caused fluid overpressure and consequent hydraulic fracturing of the competent silicified rocks. Subsequent rapid fluid pressure fluctuations led to phase separation and thus massive oxidation of ore fluids, which triggered fast precipitation of gold and other trace elements within the fine-grained irregular sulfides. Results presented here, in combination with geologic evidences, suggest that the Daqiao gold deposit can be best classified as the shallow-crustal epizonal orogenic type, genetically associated with orogenic deformation and regional metamorphism of the West Qinling orogen
    • …
    corecore