168 research outputs found

    Flux-loss of buoyant ropes interacting with convective flows

    Get PDF
    We present 3-d numerical magneto-hydrodynamic simulations of a buoyant, twisted magnetic flux rope embedded in a stratified, solar-like model convection zone. The flux rope is given an initial twist such that it neither kinks nor fragments during its ascent. Moreover, its magnetic energy content with respect to convection is chosen so that the flux rope retains its basic geometry while being deflected from a purely vertical ascent by convective flows. The simulations show that magnetic flux is advected away from the core of the flux rope as it interacts with the convection. The results thus support the idea that the amount of toroidal flux stored at or near the bottom of the solar convection zone may currently be underestimated.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound

    Get PDF
    We investigate a stochastic counterpart of majority votes over finite ensembles of classifiers, and study its generalization properties. While our approach holds for arbitrary distributions, we instantiate it with Dirichlet distributions: this allows for a closed-form and differentiable expression for the expected risk, which then turns the generalization bound into a tractable training objective.The resulting stochastic majority vote learning algorithm achieves state-of-the-art accuracy and benefits from (non-vacuous) tight generalization bounds, in a series of numerical experiments when compared to competing algorithms which also minimize PAC-Bayes objectives -- both with uninformed (data-independent) and informed (data-dependent) priors

    Relationship between cellular response and behavioral variability in bacterial chemotaxis

    Full text link
    Bacterial chemotaxis in Escherichia coli is a canonical system for the study of signal transduction. A remarkable feature of this system is the coexistence of precise adaptation in population with large fluctuating cellular behavior in single cells (Korobkova et al. 2004, Nature, 428, 574). Using a stochastic model, we found that the large behavioral variability experimentally observed in non-stimulated cells is a direct consequence of the architecture of this adaptive system. Reversible covalent modification cycles, in which methylation and demethylation reactions antagonistically regulate the activity of receptor-kinase complexes, operate outside the region of first-order kinetics. As a result, the receptor-kinase that governs cellular behavior exhibits a sigmoidal activation curve. This curve simultaneously amplifies the inherent stochastic fluctuations in the system and lengthens the relaxation time in response to stimulus. Because stochastic fluctuations cause large behavioral variability and the relaxation time governs the average duration of runs in response to small stimuli, cells with the greatest fluctuating behavior also display the largest chemotactic response. Finally, Large-scale simulations of digital bacteria suggest that the chemotaxis network is tuned to simultaneously optimize the random spread of cells in absence of nutrients and the cellular response to gradients of attractant.Comment: 15 pages, 4 figures, Supporting information available here http://cluzel.uchicago.edu/data/emonet/arxiv_070531_supp.pd

    On mesogranulation, network formation and supergranulation

    Get PDF
    We present arguments which show that in all likelihood mesogranulation is not a true scale of solar convection but the combination of the effects of both highly energetic granules, which give birth to strong positive divergences (SPDs) among which we find exploders, and averaging effects of data processing. The important role played by SPDs in horizontal velocity fields appears in the spectra of these fields where the scale ∌\sim4 Mm is most energetic; we illustrate the effect of averaging with a one-dimensional toy model which shows how two independent non-moving (but evolving) structures can be transformed into a single moving structure when time and space resolution are degraded. The role of SPDs in the formation of the photospheric network is shown by computing the advection of floating corks by the granular flow. The coincidence of the network bright points distribution and that of the corks is remarkable. We conclude with the possibility that supergranulation is not a proper scale of convection but the result of a large-scale instability of the granular flow, which manifests itself through a correlation of the flows generated by SPDs.Comment: 10 pages, 11 figures, to appear in Astronomy and Astrophysic

    Alpha effect due to buoyancy instability of a magnetic layer

    Full text link
    A strong toroidal field can exist in form of a magnetic layer in the overshoot region below the solar convection zone. This motivates a more detailed study of the magnetic buoyancy instability with rotation. We calculate the alpha effect due to helical motions caused by a disintegrating magnetic layer in a rotating density-stratified system with angular velocity Omega making an angle theta with the vertical. We also study the dependence of the alpha effect on theta and the strength of the initial magnetic field. We carry out three-dimensional hydromagnetic simulations in Cartesian geometry. A turbulent EMF due to the correlations of the small scale velocity and magnetic field is generated. We use the test-field method to calculate the transport coefficients of the inhomogeneous turbulence produced by the layer. We show that the growth rate of the instability and the twist of the magnetic field vary monotonically with the ratio of thermal conductivity to magnetic diffusivity. The resulting alpha effect is inhomogeneous and increases with the strength of the initial magnetic field. It is thus an example of an "anti-quenched" alpha effect. The alpha effect is nonlocal, requiring around 8--16 Fourier modes to reconstruct the actual EMF based on the actual mean field.Comment: 14 pages, 19 figures 3 tables (submitted to A & A

    Dynamic Coupling of Convective Flows and Magnetic Field during Flux Emergence

    Full text link
    We simulate the buoyant rise of a magnetic flux rope from the solar convection zone into the corona to better understand the energetic coupling of the solar interior to the corona. The magnetohydrodynamic model addresses the physics of radiative cooling, coronal heating and ionization, which allow us to produce a more realistic model of the solar atmosphere. The simulation illustrates the process by which magnetic flux emerges at the photosphere and coalesces to form two large concentrations of opposite polarities. We find that the large-scale convective motion in the convection zone is critical to form and maintain sunspots, while the horizontal converging flows in the near surface layer prevent the concentrated polarities from separating. The foot points of the sunspots in the convection zone exhibit a coherent rotation motion, resulting in the increasing helicity of the coronal field. Here, the local configuration of the convection causes the convergence of opposite polarities of magnetic flux with a shearing flow along the polarity inversion line. During the rising of the flux rope, the magnetic energy is first injected through the photosphere by the emergence, followed by energy transport by horizontal flows, after which the energy is subducted back to the convection zone by the submerging flows

    Simulation of Flux Emergence from the Convection Zone to the Corona

    Full text link
    Here, we present numerical simulations of magnetic flux buoyantly rising from a granular convection zone into the low corona. We study the complex interaction of the magnetic field with the turbulent plasma. The model includes the radiative loss terms, non-ideal equations of state, and empirical corona heating. We find that the convection plays a crucial role in shaping the morphology and evolution of the emerging structure. The emergence of magnetic fields can disrupt the convection pattern as the field strength increases, and form an ephemeral region-like structure, while weak magnetic flux emerges and quickly becomes concentrated in the intergranular lanes, i.e. downflow regions. As the flux rises, a coherent shear pattern in the low corona is observed in the simulation. In the photosphere, both magnetic shearing and velocity shearing occur at a very sharp polarity inversion line (PIL). In a case of U-loop magnetic field structure, the field above the surface is highly sheared while below it is relaxed

    Use of Treponema pallidum PCR in Testing of Ulcers for Diagnosis of Primary Syphilis(1.).

    Get PDF
    Treponema pallidum PCR (Tp-PCR) has been noted as a valid method for diagnosing syphilis. We compared Tp-PCR to a combination of darkfield microscopy (DFM), the reference method, and serologic testing in a cohort of 273 patients from France and Switzerland and found the diagnostic accuracy of Tp-PCR was higher than that for DFM

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    DOT tomography of the solar atmosphere. IV. Magnetic patches in internetwork areas

    Full text link
    We use G-band and Ca II H image sequences from the Dutch Open Telescope (DOT) to study magnetic elements that appear as bright points in internetwork parts of the quiet solar photosphere and chromosphere. We find that many of these bright points appear recurrently with varying intensity and horizontal motion within longer-lived magnetic patches. We develop an algorithm for detection of the patches and find that all patches identified last much longer than the granulation. The patches outline cell patterns on mesogranular scales, indicating that magnetic flux tubes are advected by granular flows to mesogranular boundaries. Statistical analysis of the emergence and disappearance of the patches points to an average patch lifetime as long as 530+-50 min (about nine hours), which suggests that the magnetic elements constituting strong internetwork fields are not generated by a local turbulent dynamo.Comment: 8 pages, 6 figure
    • 

    corecore