374 research outputs found
An experimental investigation of the design variables for NACA submerged duct entrances
Information concerning the parameters and design variables affecting an NACA submerged duct design is presented
The QUEST large area CCD camera
We have designed, constructed, and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back-illuminated devices with 13 ”m x 13 ”m pixels. The camera covers an area of 4.6° x 3.6° on the sky with an active area of 9.6 deg_2. This camera has been installed at the prime focus of the telescope and commissioned, and scientific-quality observations on the Palomar-QUEST Variability Sky Survey were started in 2003 September. The design considerations, construction features, and performance parameters of this camera are described in this paper
ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) is under construction to
measure the expansion history of the universe using the baryon acoustic
oscillations technique. The spectra of 35 million galaxies and quasars over
14,000 square degrees will be measured during a 5-year survey. A new prime
focus corrector for the Mayall telescope at Kitt Peak National Observatory will
deliver light to 5,000 individually targeted fiber-fed robotic positioners. The
fibers in turn feed ten broadband multi-object spectrographs. We describe the
ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall
telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky
technology demonstration with the goal to reduce technical risks associated
with aligning optical fibers with targets using robotic fiber positioners and
maintaining the stability required to operate DESI. The ProtoDESI prime focus
instrument, consisting of three fiber positioners, illuminated fiducials, and a
guide camera, was installed behind the existing Mosaic corrector on the Mayall
telescope. A Fiber View Camera was mounted in the Cassegrain cage of the
telescope and provided feedback metrology for positioning the fibers. ProtoDESI
also provided a platform for early integration of hardware with the DESI
Instrument Control System that controls the subsystems, provides communication
with the Telescope Control System, and collects instrument telemetry data.
Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a
Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was
successful in acquiring targets with the robotically positioned fibers and
demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio
Aspects of Augustana and Swedish America: Essays in honor of Dr. Conrad Bergendoff on his 100th Year
Table of Contents:
Introduction -- Emmet E. Eklund / The Mosaic of Augustanaâs Swedish Lutheran Origins -- Maria Erling / Molding Ministers to Fit Congregations: Religious Leadership Among New Englandâs Swedes -- H. Arnold Barton / Conrad Bergendoff and the Swedish-American Church Language Controversy of the 1920s -- Elder M. Lindahl / The Troublesome Language Question -- Ann Boaden / Weighing the Stars and Hearing the Word: Conrad Bergendoffâs Idea of Christian Higher Education at Augustana College and Theological Seminary -- Mark A. Granquist / Conrad Bergendoff and the LCA Merger of 1962 -- Dag Blanck / North Stars and Vasa Orders: On the Relationship Between Sweden and Swedish American -- Bernhard Erling / The Fourth R--Religious Education in Sweden and the USA -- Judith Belan / Bibliography of the Published Writings of Dr. Conrad Bergendoff, 1963-1995https://digitalcommons.augustana.edu/ahsbooks/1016/thumbnail.jp
Weak Lensing from Space I: Instrumentation and Survey Strategy
A wide field space-based imaging telescope is necessary to fully exploit the
technique of observing dark matter via weak gravitational lensing. This first
paper in a three part series outlines the survey strategies and relevant
instrumental parameters for such a mission. As a concrete example of hardware
design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using
SNAP engineering models, we quantify the major contributions to this
telescope's Point Spread Function (PSF). These PSF contributions are relevant
to any similar wide field space telescope. We further show that the PSF of SNAP
or a similar telescope will be smaller than current ground-based PSFs, and more
isotropic and stable over time than the PSF of the Hubble Space Telescope. We
outline survey strategies for two different regimes - a ``wide'' 300 square
degree survey and a ``deep'' 15 square degree survey that will accomplish
various weak lensing goals including statistical studies and dark matter
mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle
interactions with a detector containing a total of 10 tonnes of liquid xenon
within a double-vessel cryostat. The large mass and proximity of the cryostat
to the active detector volume demand the use of material with extremely low
intrinsic radioactivity. We report on the radioassay campaign conducted to
identify suitable metals, the determination of factors limiting radiopure
production, and the selection of titanium for construction of the LZ cryostat
and other detector components. This titanium has been measured with activities
of U~1.6~mBq/kg, U~0.09~mBq/kg,
Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL).
Such low intrinsic activities, which are some of the lowest ever reported for
titanium, enable its use for future dark matter and other rare event searches.
Monte Carlo simulations have been performed to assess the expected background
contribution from the LZ cryostat with this radioactivity. In 1,000 days of
WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute
only a mean background of (stat)(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle
Physic
Discovery of the Optical Transient of the Gamma Ray Burst 990308
The optical transient of the faint Gamma Ray Burst 990308 was detected by the
QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after
the burst. Our photometry gives , , , and for times ranging from 3.28 to 3.47
hours after the burst. The colors correspond to a spectral slope of close to
. Within the standard synchrotron fireball model,
this requires that the external medium be less dense than , the
electrons contain of the shock energy, and the magnetic field energy
must be less than 24% of the energy in the electrons for normal interstellar or
circumstellar densities. We also report upper limits of at 132 s
(with LOTIS), from 132-1029s (with LOTIS), at 28.2 min
(with Super-LOTIS), and a 8.5 GHz flux of at 110 days (with the
Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to
be empty of any host galaxy to and . The lack of a host
galaxy likely implies that it is either substantially subluminous or more
distant than a red shift of .Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor
- âŠ