7 research outputs found

    Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis

    No full text
    Tumorigenesis is a complex process driven by numerous risk factors. Here, genomic analysis of liver cancer reveals the evolution of mutational signatures during tumor development, highlighting mutational and structural signatures linked to environmental exposures and endogenous cellular processes

    Dataset for: Novel landscape of HLA-G isoforms in clear cell renal cell carcinoma patients

    No full text
    Immune-checkpoints are powerful inhibitory molecules that promote tumor survival. Their blockade is now recognized as providing effective therapeutic benefit against cancer. HLA-G, a recently identified immune checkpoint, has been detected in many types of primary tumors and metastases, in malignant effusions as well as on tumor-infiltrating cells, particularly in patients with clear cell renal cell carcinoma (ccRCC). Here, in order to define a possible anti-cancer therapy, we used a molecular approach based on an unbiased strategy that combines transcriptome determination and immunohistochemical labeling, to analyze in-depth, the HLA-G isoforms expressed in these tumors. We found that the expression of HLA-G is highly variable among tumors and distinct areas of the same tumor, testifying a marked inter- and intra-tumor heterogeneity. Moreover, our results generate an inventory of novel HLA-G isoforms which includes spliced forms that have an extended 5’-region and lack the transmembrane and alpha-1 domains. So far, these isoforms could not be detected by any method available and their assessment may improve the procedure by which tumors are analyzed. Collectively, our approach provides the first extensive portrait of HLA-G in ccRCC and reveals data that should prove suitable for the tailoring of future clinical applications

    Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA.

    No full text
    International audienceThe spliceosome, a ribonucleoprotein complex that includes proteins and small nuclear RNAs (snRNAs), catalyzes RNA splicing through intron excision and exon ligation to produce mature messenger RNAs, which, in turn serve as templates for protein translation. We identified four point mutations in the U4atac snRNA component of the minor spliceosome in patients with brain and bone malformations and unexplained postnatal death [microcephalic osteodysplastic primordial dwarfism type 1 (MOPD 1) or Taybi-Linder syndrome (TALS); Mendelian Inheritance in Man ID no. 210710]. Expression of a subgroup of genes, possibly linked to the disease phenotype, and minor intron splicing were affected in cell lines derived from TALS patients. Our findings demonstrate a crucial role of the minor spliceosome component U4atac snRNA in early human development and postnatal survival

    Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress

    No full text
    Cyclins A2 and E1 are known to regulate the cell cycle by promoting S phase entry and progression. Here, they identify an aggressive hepatocellular carcinoma subgroup exhibiting cyclin activation through various mechanisms and find this subgroup to display replication stress-induced structural rearrangements frequently activating TERT promoter

    Variation in genomic landscape of clear cell renal cell carcinoma across Europe

    No full text
    International audienceThe incidence of renal cell carcinoma (RCC) is increasing worldwide, and its prevalence is particularly high in some parts of Central Europe. Here we undertake whole-genome and transcriptome sequencing of clear cell RCC (ccRCC), the most common form of the disease, in patients from four different European countries with contrasting disease incidence to explore the underlying genomic architecture of RCC. Our findings support previous reports on frequent aberrations in the epigenetic machinery and PI3K/mTOR signalling, and uncover novel pathways and genes affected by recurrent mutations and abnormal transcriptome patterns including focal adhesion, components of extracellular matrix (ECM) and genes encoding FAT cadherins. Furthermore, a large majority of patients from Romania have an unexpected high frequency of A:T>T:A transversions, consistent with exposure to aristolochic acid (AA). These results show that the processes underlying ccRCC tumorigenesis may vary in different populations and suggest that AA may be an important ccRCC carcinogen in Romania, a finding with major public health implications
    corecore