690 research outputs found

    The relationship between MEG and fMRI

    Get PDF
    In recent years functional neuroimaging techniques such as fMRI, MEG, EEG and PET have provided researchers with a wealth of information on human brain function. However none of these modalities can measure directly either the neuro-electrical or neuro-chemical processes that mediate brain function. This means that metrics directly reflecting brain ‘activity’ must be inferred from other metrics (e.g. magnetic fields (MEG) or haemodynamics (fMRI)). To overcome this limitation, many studies seek to combine multiple complementary modalities and an excellent example of this is the combination of MEG (which has high temporal resolution) with fMRI (which has high spatial resolution). However, the full potential of multi-modal approaches can only be truly realised in cases where the relationship between metrics is known. In this paper, we explore the relationship between measurements made using fMRI and MEG. We describe the origins of the two signals as well as their relationship to electrophysiology. We review multiple studies that have attempted to characterise the spatial relationship between fMRI and MEG, and we also describe studies that exploit the rich information content of MEG to explore differing relationships between MEG and fMRI across neural oscillatory frequency bands. Monitoring the brain at “rest” has become of significant recent interest to the neuroimaging community and we review recent evidence comparing MEG and fMRI metrics of functional connectivity. A brief discussion of the use of magnetic resonance spectroscopy (MRS) to probe the relationship between MEG/fMRI and neurochemistry is also given. Finally, we highlight future areas of interest and offer some recommendations for the parallel use of fMRI and MEG

    The effect of isocapnic hyperoxia on neurophysiology as measured with MRI and MEG

    Get PDF
    The physiological effect of hyperoxia has been poorly characterised, with studies reporting conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on resting cerebral physiology. This study used a RespirActTM system to deliver a repeatable isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral physiology, removing any potential confounds related to altered CO2. T1-independent Phase Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on carotid blood flow (normoxia 201 ± 11 ml/min, -0.3 ± 0.8 % change during hyperoxia, p = 0.8), whilst Look Locker ASL was used to demonstrate that there is no significant change in arterial cerebral blood volume (normoxia 1.3 ± 0.4 %, -0.5 ± 5 % change during hyperoxia). These are in contrast to significant changes in blood flow observed for hypercapnia (6.8 ± 1.5 %/mmHg CO2). In addition, magnetoencephalography provided a method to monitor the effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a significant focal decrease in oscillatory power was observed across the alpha, beta and low gamma bands in the occipital lobe, compared to a more global significant decrease on hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, but these changes are smaller than those observed under hypercapnia. The effect of this change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and hypercapnia needs further investigation

    Bradykinesia Is Driven by Cumulative Beta Power During Continuous Movement and Alleviated by Gabaergic Modulation in Parkinson's Disease

    Get PDF
    Spontaneous and "event-related" motor cortex oscillations in the beta (15-30 Hz) frequency range are well-established phenomena. However, the precise functional significance of these features is uncertain. An understanding of the specific function is of importance for the treatment of Parkinson's disease (PD), where attenuation of augmented beta throughout the motor network coincides with functional improvement. Previous research using a discrete movement task identified normalization of elevated spontaneous beta and postmovement beta rebound following GABAergic modulation. Here, we explore the effects of the gamma-aminobutyric acid type A modulator, zolpidem, on beta power during the performance of serial movement in 17 (15M, 2F; mean age, 66 ± 6.3 years) PD patients, using a repeated-measures, double-blinded, randomized, placebo-control design. Motor symptoms were monitored before and after treatment, using time-based Unified Parkinson's Disease Rating Scale measurements and beta oscillations in primary motor cortex (M1) were measured during a serial-movement task, using magnetoencephalography. We demonstrate that a cumulative increase in M1 beta power during a 10-s tapping trial is reduced following zolpidem, but not placebo, which is accompanied by an improvement in movement speed and efficacy. This work provides a clear mechanism for the generation of abnormally elevated beta power in PD and demonstrates that perimovement beta accumulation drives the slowing, and impaired initiation, of movement. These findings further indicate a role for GABAergic modulation in bradykinesia in PD, which merits further exploration as a therapeutic target.Peer reviewe

    A systematic review evaluating the implementation of technologies to assess, monitor and treat neurodevelopmental disorders: A map of the current evidence

    Get PDF
    Technology-based interventions provide an attractive option for improving service provision for neurodevelopmental disorders (NDD), for example, widening access to interventions, objective assessment, and monitoring; however, it is unclear whether there is sufficient evidence to support their use in clinical settings. This review provides an evidence map describing how technology is implemented in the assessment/diagnosis and monitoring/ treatment of NDD (Prospero CRD42018091156). Using predefined search terms in six databases, 7982 articles were identified, 808 full-texts were screened, resulting in 47 included papers. These studies were appraised and synthesised according to the following outcomes of interest: effectiveness (clinical effectiveness/ service delivery efficiencies), economic impact, and user impact (acceptability/ feasibility). The findings describe how technology is currently being utilised clinically, highlights gaps in knowledge, and discusses future research needs. Technology has been used to facilitate assessment and treatment across multiple NDD, especially Autism Spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders. Technologies include mobile apps/tablets, robots, gaming, computerised tests, videos, and virtual reality. The outcomes presented largely focus on the clinical effectiveness of the technology, with approximately half the papers demonstrating some degree of effectiveness, however, the methodological quality of many studies is limited. Further research should focus on randomised controlled trial designs with longer follow-up periods, incorporating an economic evaluation, as well as qualitative studies including process evaluations and user impact

    Metabolism, Gas Exchange, and Carbon Spiraling in Rivers

    Get PDF
    Ecosystem metabolism, that is, gross primary productivity (GPP) and ecosystem respiration (ER), controls organic carbon (OC) cycling in stream and river networks and is expected to vary predictably with network position. However, estimates of metabolism in small streams outnumber those from rivers such that there are limited empirical data comparing metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14–84 m3 s−1) in the Western and Midwestern United States (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6–22 g O2 m−2 d−1 and ER tracked GPP, suggesting that autotrophic production supports much of riverine ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas exchange estimates from these 14 rivers in agreement with empirical models. Carbon turnover lengths (that is, the distance traveled before OC is mineralized to CO2) ranged from 38 to 1190 km, with the longest turnover lengths in high-sediment, arid-land rivers. We also compared estimated turnover lengths with the relative length of the river segment between major tributaries or lakes; the mean ratio of carbon turnover length to river length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d−1, and were not different than measurements from small streams. Given high GPP relative to ER, combined with generally short OC spiraling lengths, rivers can be highly reactive with regard to OC cycling. © 2015, Springer Science+Business Media New York

    Calibrated BOLD using direct measurement of changes in venous oxygenation

    Get PDF
    Calibration of the BOLD signal is potentially of great value in providing a closer measure of the underlying changes in brain function related to neuronal activity than the BOLD signal alone, but current approaches rely on an assumed relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF). This is poorly characterised in humans and does not reflect the predominantly venous nature of BOLD contrast, whilst this relationship may vary across brain regions and depend on the structure of the local vascular bed. This work demonstrates a new approach to BOLD calibration which does not require an assumption about the relationship between cerebral blood volume and cerebral blood flow. This method involves repeating the same stimulus both at normoxia and hyperoxia, using hyperoxic BOLD contrast to estimate the relative changes in venous blood oxygenation and venous CBV. To do this the effect of hyperoxia on venous blood oxygenation has to be calculated, which requires an estimate of basal oxygen extraction fraction, and this can be estimated from the phase as an alternative to using a literature estimate. Additional measurement of the relative change in CBF, combined with the blood oxygenation change can be used to calculate the relative change in CMRO2 due to the stimulus. CMRO2 changes of 18 ± 8% in response to a motor task were measured without requiring the assumption of a CBV/CBF coupling relationship, and are in agreement with previous approaches

    Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis?

    Get PDF
    Objective Occurrences of early‐life stress (ELS) are associated with the severity of psychotic symptoms and working memory (WM) deficits in patients with psychosis (PSY). This study investigated potential mediation roles of WM behavioral performance and glutamate concentrations in prefrontal brain regions on the association between ELS and psychotic symptom severity in PSY. Method Forty‐seven patients with PSY (established schizophrenia, n = 30; bipolar disorder, n = 17) completed measures of psychotic symptom severity. In addition, data on ELS and WM performance were collected in both patients with PSY and healthy controls (HC; n = 41). Resting‐state glutamate concentrations in the bilateral dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) were also assessed with proton magnetic resonance spectroscopy for both PSY and HC groups. t tests, analyses of variance, and regression analyses were utilized. Results Participants with PSY reported significantly more ELS occurrences and showed poorer WM performance than HC. Furthermore, individuals with PSY displayed lower glutamate concentrations in the left DLPFC than HC. Neither ELS nor WM performance were predictive of severity of psychotic symptoms in participants with PSY. However, we found a significant negative correlation between glutamate concentrations in the left DLPFC and ELS occurrence in HC only. Conclusion In individuals with PSY, the current study found no evidence that the association between ELS and psychotic symptoms is mediated by WM performance or prefrontal glutamate concentrations. In HC, the association between ELS experience and glutamate concentrations may indicate a neurometabolite effect of ELS that is independent of an illness effect in psychosis

    Perturbation drives changing metapopulation dynamics in a top marine predator

    Get PDF
    Funding: O.E.G. was supported by the Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council (grant no. HR09011). E.L.C. was supported by a Newton Fellowship (Royal Society of London), Marie Curie Fellowship (EU Horizon2020) and a Rutherford Discovery Fellowship (Royal Society of New Zealand). A.J.H. and D.J.F.R. were supportedby NERC (grant no. SMRU 10/001).Metapopulation theory assumes a balance between local decays/extinctions and local growth/new colonisations. Here we investigate whether recent population declines across part of the UK harbour seal range represent normal metapopulation dynamics or are indicative of perturbations potentially threatening the metapopulation viability, using 20 years of population trends, location tracking data (n = 380), and UK-wide, multi-generational population genetic data (n = 269). First, we use microsatellite data to show that two genetic groups previously identified are distinct metapopulations: northern and southern. Then, we characterize the northern metapopulation dynamics in two different periods, before and after the start of regional declines (pre-/peri-perturbation). We identify source-sink dynamics across the northern metapopulation, with two putative source populations apparently supporting three likely sink populations, and a recent metapopulation-wide disruption of migration coincident with the perturbation. The northern metapopulation appears to be in decay, highlighting that changes in local populations can lead to radical alterations in the overall metapopulation's persistence and dynamics.PostprintPeer reviewe

    Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation

    Get PDF
    Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (nonwadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer base flow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length

    User-centered development of a Virtual Research Environment to support collaborative research events

    Get PDF
    This paper discusses the user-centred development process within the Collaborative Research Events on the Web (CREW) project, funded under the JISC Virtual Research Environments (VRE) programme. After presenting the project, its aims and the functionality of the CREW VRE, we focus on the user engagement approach, grounded in the method of co-realisation. We describe the different research settings and requirements of our three embedded user groups and the respective activities conducted so far. Finally we elaborate on the main challenges of our user engagement approach and end with the project’s next steps
    • 

    corecore