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ABSTRACT 1 

The physiological effect of hyperoxia has been poorly characterised, with studies reporting 2 

conflicting results on the role of hyperoxia as a vasoconstrictor. It is not clear whether 3 

hyperoxia is the primary contributor to vasoconstriction or whether induced changes in CO2 4 

that commonly accompany hyperoxia are a factor. As calibrated BOLD fMRI based on 5 

hyperoxia becomes more widely used, it is essential to understand the effects of oxygen on 6 

resting cerebral physiology. This study used a RespirActTM system to deliver a repeatable 7 

isocapnic hyperoxia stimulus to investigate the independent effect of O2 on cerebral 8 

physiology, removing any potential confounds related to altered CO2. T1-independent Phase 9 

Contrast MRI was used to demonstrate that isocapnic hyperoxia has no significant effect on 10 

carotid blood flow (normoxia 201 ± 11  ml/min, -0.3 ± 0.8 % change during hyperoxia, p = 11 

0.8), whilst Look Locker ASL was used to demonstrate that there is no significant change in 12 

arterial cerebral blood volume (normoxia 1.3 ± 0.4 %, -0.5 ± 5 % change during hyperoxia). 13 

These are in contrast to significant changes in blood flow observed for hypercapnia (6.8 ± 14 

1.5 %/mmHg CO2). In addition, magnetoencephalography provided a method to monitor the 15 

effect of isocapnic hyperoxia on neuronal oscillatory power. In response to hyperoxia, a 16 

significant focal decrease in oscillatory power was observed across the alpha, beta and low 17 

gamma bands in the occipital lobe, compared to a more global significant decrease on 18 

hypercapnia. This work suggests that isocapnic hyperoxia provides a more reliable stimulus 19 

than hypercapnia for calibrated BOLD, and that previous reports of vasoconstriction during 20 

hyperoxia probably reflect the effects of hyperoxia-induced changes in CO2. However, 21 

hyperoxia does induce changes in oscillatory power consistent with an increase in vigilance, 22 

but these changes are smaller than those observed under hypercapnia. The effect of this 23 

change in neural activity on calibrated BOLD using hyperoxia or combined hyperoxia and 24 

hypercapnia needs further investigation. 25 

 26 

Key words: Hyperoxia, Magnetoencephalography, BOLD, fMRI, Cerebral Blood Flow, 27 

Cerebral Blood Volume, Neural oscillations.  28 

29 
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INTRODUCTION  1 

Hyperoxia (raising the inspired fraction of oxygen (FiO2) above normal physiological levels 2 

(0.21)), is increasingly being used to provide exogenous contrast in functional magnetic 3 

resonance imaging (fMRI), primarily to provide a method of calibrating the blood 4 

oxygenation level dependent (BOLD) effect, but also to study venous blood oxygenation and 5 

venous blood volume (Blockley et al., 2012, Kwong et al., 1995, Rostrup et al., 1995, Bulte 6 

et al., 2007a, Bulte et al., 2007b, Chiarelli et al., 2007a, Chiarelli et al., 2007b, Driver et al., 7 

2012, Driver et al., 2013). Hyperoxia increases arterial oxygen content (mostly through an 8 

increase in O2 dissolved in blood plasma), thus increasing venous oxygen saturation, and 9 

hence decreasing the concentration of deoxyhaemoglobin in capillaries and veins (Rostrup et 10 

al., 1995). This leads to an increase in the transverse relaxation time (T2
*) of blood in vessels 11 

and the surrounding tissue, and thus a global increase in the BOLD-MRI signal (Losert et al., 12 

2002, Ogawa and Lee, 1990).  13 

 14 

Calibrated functional magnetic resonance imaging (fMRI) provides a non-invasive method of 15 

quantifying the fractional change in cerebral metabolic rate of oxygen (CMRO2) consumption 16 

giving rise to a BOLD signal change during an fMRI experiment (Kastrup et al., 2002, 17 

Chiarelli et al., 2007a, Stefanovic et al., 2005, Uludag et al., 2004, Mohtasib et al., 2012, 18 

Davis et al., 1998). Hyperoxia has been suggested as an alternative to the more common 19 

hypercapnia-based BOLD calibration (Chiarelli et al., 2007b, Driver et al., 2012), providing 20 

the advantages of a more precise estimate of CMRO2 and a more tolerable stimulus which 21 

can be applied for longer periods. Furthermore, hypercapnia-based BOLD calibration is 22 

likely to be compromised by the known change in electrophysiological activity with 23 

hypercapnic stimuli, and the impact this may have on CMRO2  (Jones et al., 2005, Hall et al., 24 

2011, Xu et al., 2011, Zappe et al., 2008, Thesen et al., 2012), although such a reduction in 25 

CMRO2 is contested (Chen and Pike, 2010). To date, there remains some doubt as to the 26 

effect of hyperoxia on tissue blood flow and neuronal activity, and any such changes would 27 

complicate or undermine the use of hyperoxia-based BOLD calibration. More recently, a 28 

combined method of hyperoxia-hypercapnia BOLD calibration has been proposed (Bulte et 29 

al., 2012, Gauthier and Hoge, 2012), with the potential to offer a clinically viable alternative 30 

to positron emission PET for quantification of baseline CMRO2. However, this will combine 31 
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the potential pitfalls associated with the separate delivery of hyperoxia and hypercapnia, and 1 

so further emphasises the need to fully understand the accuracy of each of these methods. 2 

 3 

Reports in the literature as to the effect of hyperoxia on tissue blood flow are contradictory 4 

(Kety and Schmidt, 1948, Watson et al., 2000, Kolbitsch et al., 2002, Bulte et al., 2007b). 5 

Some previous studies may have been confounded by associated arterial hypocapnia, caused 6 

by the Haldane effect (a reduction in CO2 carrying capacity of oxyhaemoglobin during 7 

hyperoxia) (Becker et al., 1996, Loeppky et al., 1983). For example, Bulte et al. reported a 8 

reduction of approximately 4 mmHg in PETCO2 under 60 % O2 (Bulte et al., 2007b).  Since 9 

the vasculature is very sensitive to changes in blood levels of CO2 (Bray, 1999), a relatively 10 

low level of concomitant hypocapnia, may significantly decrease blood flow. Therefore, to 11 

properly characterise the effect of hyperoxia, it is important to control or monitor any 12 

confounding changes in the level of CO2. An additional complication is that the technique of 13 

Arterial Spin Labelling (ASL), which is frequently used to measure cerebral blood flow 14 

(CBF), is sensitive to tissue and blood longitudinal relaxation times (T1). During hyperoxia, 15 

dissolved plasma oxygen shortens the T1 of blood (Noseworthy et al., 1999, Tadamura et al., 16 

1997) and tissue (O'Connor et al., 2007) which would lead to an under-estimation of CBF 17 

during hyperoxia if not properly accounted for when modelling the data.  18 

 19 

The effect of hyperoxia on underlying neuronal activity can also be studied using 20 

electrophysiology. Using electroencephalography (EEG) to assess the effect of 35 % O2 on 21 

cognitive performance and brain activity, Seo et al. (2007b) found a reduction in beta and 22 

gamma power in the left and right hemispheres, an increase in delta power in the left and 23 

right hemispheres, and a reduction in alpha power in the left side of the brain. However, 24 

others (Lindauer et al., 2003, Smith and Strawbridge, 1974, Kaskinoro et al., 2010) have 25 

found no significant effect of a change in blood oxygenation level on electrophysiology 26 

signals. These studies have either employed scalp level electric field measures (EEG) or very 27 

focal invasive electrode recordings (rat whisker studies (Lindauer et al., 2003)). 28 

Magnetoencephalography (MEG) provides a non-invasive method of spatially resolving the 29 

electrophysiological effects of hyperoxia across cortical grey matter. 30 

 31 

The aim of this study was to assess changes in blood flow and localised neuronal activity in 32 

response to isocapnic hyperoxia. We used a RespirActTM (Thornhill Research Inc., Toronto, 33 

Canada) system to provide independent control of end-tidal levels of O2 (PETO2) and CO2 34 
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(PETCO2). MR measurements were performed at ultra-high field (7 T) to provide increased 1 

signal-to-noise ratio (SNR), and lengthened T1 relaxation times, increasing the contrast-to-2 

noise ratio (CNR) in ASL (Gardener et al., 2009). ASL measurements were used to quantify 3 

arterial cerebral blood volume (aCBV), rather than CBF, as aCBV is thought to drive the 4 

CBF and BOLD signal changes (Brookes et al., 2007, Zheng et al., 2002) and aCBV 5 

weighted ASL has greater sensitivity than CBF weighted ASL measures (Brookes et al., 6 

2007, Zheng et al., 2002). Phase contrast (PC) MRI was used as a T1 independent measure of 7 

blood flow. Finally, MEG was used to monitor the effects of hyperoxia on 8 

electrophysiological brain activity. 9 

 10 

METHODS 11 

This study comprised two MR sessions (Experiment 1 and 2) and one MEG session 12 

(Experiment 3). The study was approved by the University of Nottingham Medical School 13 

ethics committee and subjects gave prior informed written consent. Six subjects (aged 24-28 14 

yrs, 4 female) participated in Experiment 1, 7 subjects (age 24-48 yrs, 3 female,) participated 15 

in Experiment 2, and 9 subjects (age range 23-30 years, 4 female) participated in Experiment 16 

3. MR scanning was performed using a Philips Achieva 7.0 T system with head volume 17 

transmit and 32-ch SENSE receive coil with foam padding used to reduce head motion. MEG 18 

recordings were made using a 275-channel axial gradiometer (CTF) MEG system (MISL, 19 

Port Coquitlam, BC, Canada) 20 

 21 

A feed-forward, low gas flow system (RespirAct™, Thornhill Research Inc., Toronto, 22 

Canada) and a sequential gas delivery (SGD) breathing circuit were used to target end-tidal 23 

PCO2 (PETCO2) and PO2 (PETO2) independently (Slessarev et al., 2007), and maintain a 24 

constant normoxic baseline where necessary Source gases used by the system were 100 % 25 

O2, medical air and two blends of O2, CO2 and N2 gas each containing a minimum of 10 % O2 26 

for safety purposes. Using the approach of Slessarev et al. (2007), the RespirAct™ 27 

determines the required flow of these source gases, to target pre-determined PETCO2 and 28 

PETO2 values. Prior to MRI or MEG measurement, the subject sat upright on the scanner bed 29 

while baseline metabolic values were estimated and targeted. Whilst lying supine in the 30 

scanner, the subject received medical air via the RespirAct™ until the respiratory challenge 31 

commenced.  32 

http://www.sciencedirect.com/science/article/pii/S1053811912008531#bb0260
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 1 

Experiment 1: Phase Contrast MRI flow measurement under hyperoxia and hypercapnia. The 2 

experiment involved 1 minute of normoxic baseline followed by 5 minutes of isocapnic 3 

hyperoxia (PETO2 targeted at 500mmHg, equivalent to FiO2 = 0.6, at subject’s resting 4 

PETCO2, included as a positive control), and then 5 minutes of normoxic baseline. This was 5 

then followed by 2 cycles of 2 minutes of hypercapnia (subject’s resting PETO2, PETCO2 6 

targeted at baseline + 8mmHg), separated by 2 minutes of baseline, followed by 1 minute of 7 

baseline (Figure 1A). The total duration of the respiratory challenge was 20 minutes, 8 

including transitions between the different blood gas levels. All hyperoxia transitions 9 

consisted of a graded increase/decrease in target PETO2 (between subject specific baseline 10 

and 500mmHg across 1 minute) in order to minimise a sudden influx of gas, as is common 11 

with a square-wave transition. This minimises discrepancies between targeted and actual 12 

PETO2, allowing a steady-state to be reached near instantaneously.  13 

 14 

Sagittal and coronal 2D PC-MRA data sets (2 slices of thickness 30 mm, TR/TE = 14/7.6 ms, 15 

FA = 20°, FOV = 230 x 230 mm2, SENSE 2, vENC = 30 cm/s scan duration = 47 s for number 16 

of signal averages (NSA) 4) were acquired prior to the respiratory challenge to locate the left 17 

and right internal carotid arteries (ICA) and other major vessels in the neck. Blood flow in 18 

each ICA was measured using a vectorcardiogram (VCG) gated, 2D PC-MRA (TR/TE = 19 

15/6.5 ms, FA = 25°, FOV = 280 x 77 mm2, 0.75 x 0.75 x 6 mm3 reconstructed, SENSE 4, 20 

vENC = 0 and 100 cm/s, scan duration = 1 min 25 s for 2 averages) on a single slice 21 

perpendicular to the targeted ICA with 16-25 phases (dependent on subject heart rate). The 22 

measurement plane was positioned through the C1 segment of the spinal cord, where the left 23 

and right ICA were approximately parallel (Figure 2A). PC-MRA data were collected 24 

throughout the 20 minute respiratory challenge with 4 repeats collected at normoxia, 25 

hyperoxia, and hypercapnia.  26 

 27 

PC-MRI flow data were analyzed using QFlow software (Philips, Best, Netherlands).  28 

Regions of interest (ROIs) were drawn manually around the lumen of the carotid arteries on 29 

each phase contrast image (Figure 2B), contour detection software was used to improve the 30 

ROI accuracy. The mean signal intensity within each ROI reflected the flow velocity in the 31 

vessel (cm/s) for each cardiac phase. The cross-sectional area of each vessel lumen was 32 

multiplied by the velocity, to compute, for each cardiac phase, the carotid artery blood flow 33 

in ml/min.  34 
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 1 

The flux data were then averaged across left and right ICAs, and repeated measurements, to 2 

give an average carotid artery flux waveform at normoxia, hyperoxia and hypercapnia. These 3 

data were then averaged across all subjects to give a mean response across cardiac cycle, and 4 

across all phases of the cardiac cycle to provide a single value from which to estimate mean 5 

blood flow (MBF) at normoxia, hyperoxia and hypercapnia. The change in MBF induced by 6 

hyperoxia and hypercapnia was then assessed using a non-parametric Wilcoxon signed rank 7 

test (SPSS 16, Chicago, IL, USA), and the % change in MBF per mmHg CO2 caluclated for 8 

each subject and averaged. The variance between the repeat measures of MBF calculated 9 

normoxia was assessed to estimate the minimum detectable change (MDC) in MBF at a 10 

significance of P = 0.05. 11 

 12 

Experiment 2: aCBV response to hyperoxia: This experiment involved 1 minute of baseline 13 

followed by 2 minutes of isocapnic hyperoxia (PETO2 targeted at 500 mmHg, subject’s resting 14 

PETCO2) and 1 minute of baseline (Figure 1B). PETCO2 was maintained at subject specific 15 

resting levels throughout. The duration of the respiratory challenge was 6 minutes, including 16 

transitions. 17 

 18 

Flow-sensitive alternating inversion recovery (FAIR) Arterial Spin Labelling (ASL) was 19 

combined with Look-Locker (LL) sampling to map aCBV using a two compartment vascular 20 

kinetic model (Brookes et al., 2007, Francis et al., 2008). The acquisition parameters were: 21 

initial inversion delay (TI) = 150 ms, readout spacing (TA) = 100 ms, TR = 3000 ms, TE = 22 

16 ms, 21 phases, FA = 45°, single slice EPI with an in-plane resolution of 2 x 2 mm, FOV = 23 

192 x 192 mm, slice thickness of 3 mm. In addition, at normoxia a base magnetisation image 24 

was acquired and a series of inversion recovery EPI images (10 inversion times, 100 - 2600 25 

ms) which were fitted for T1. A grey matter (GM) mask was then formed by thresholding the 26 

T1 map at 1.7 ≤ T1 ≤ 2.3 s. The mean GM aCBV and arterial transit time (〉arterial) were then 27 

calculated. First aCBV weighted difference images were formed by subtraction of the label 28 

from control images (Figure 3A). The average aCBV difference signal within the GM mask 29 

for each LL-readout was then estimated, for both the normoxia and hyperoxia periods. These 30 

signal curves were then normalised by the base magnetisation blood signal from the middle 31 

cerebral artery, and the resulting normalised aCBV signal curves at normoxia and hyperoxia 32 

fitted for GM aCBV and 〉arterial as described in (Brookes et al., 2007). This fitting required an 33 

estimate of T1blood on normoxia and hyperoxia. The measurement of T1blood at normoxia and 34 
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hyperoxia  in vivo in humans at 7 T is difficult due to its fast flow rate and the limited 1 

coverage of the head transmit coil, therefore we assumed a T1 of arterial blood (FiO2 = 0.2) at 2 

7 T of 2200 ms (T1blood normoxia) (Rane and Gore, 2013, Grgac et al., 2013). Estimate 3 

T1blood during at 7 T required a number of extrapolations: we first used the T1 of arterial 4 

blood at 7 T together with that at 1.5 T of 1205 ms (Noseworthy et al., 1999) to calculate the 5 

exponent in the expression of Rooney et al. (2007) relating T1 to field strength (B0), giving T1 6 

= 839(B0)
0.39. We then used this expression to extrapolate the value of T1blood = 979 ms at 7 

FiO2 = 1 measured at 1.5 T  (Noseworthy et al., 1999) to 1792 ms at 7 T. These 7T values of 8 

T1blood at FiO2 = 0.2 and 1, were then exponentially interpolated (Bulte et al., 2007b) to 9 

estimate the T1blood at 7T for FiO2 = 0.6  of 1986 ms (T1blood hyperoxia). Significant effects of 10 

hyperoxia on mean aCBV and arterial transit time were assessed across subjects using a non-11 

parametric Wilcoxon signed rank test.  12 

 13 

Experiment 3: MEG response to hyperoxia: This involved 1 minute of baseline followed by 2 14 

cycles of 5 minutes of isocapnic hyperoxia (PETO2 targeted at 500mmHg, subject’s resting 15 

PETCO2) separated by 5 minutes of baseline with a final minute of baseline (Figure 1C). The 16 

duration of the respiratory challenge was 21 minutes, including transitions. MEG data were 17 

acquired using a 275-channel CTF MEG system (MISL, Port Coquitlam, BC, Canada), at a 18 

rate of 600 Hz, with a 150 Hz anti-aliasing hardware filter and with synthetic third order 19 

gradiometer interference suppression. Subjects were instructed to lie supine in the system and 20 

to fixate their eyes on a dot presented on a screen located ~ 40 cm in front of them. For head 21 

localisation, three electromagnetic coils were placed on the head (nasion, left preauricular and 22 

right preauricular), the position of these coils on the subject’s head were measured using a 3D 23 

digitiser (Polhemus isotrack). These coils were energised to locate the position of the 24 

subject’s head within the MEG helmet. An MPRAGE structural scan was acquired using a 25 

Philips Achieva 3 T MR scanner (1 mm3 isotropic resolution, 256 x 256 x 160 mm FOV, 26 

TI/TE/TR = 960/3.9/8.3 ms, FA = 8, SENSE factor = 3 and shot interval = 3 s). The 27 

locations of the fiducial markers and MEG sensors with respect to the brain anatomy were 28 

determined by matching the digitised head surface to the head surface extracted from the 29 

structural MRI.  30 

 31 

MEG data were processed using the method described in (Hall et al., 2011) to study the effect 32 

of hypercapnia on electrophysiological signals. First, 4 dimensional/volumetric maps of the 33 
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timecourse of the change in electrical oscillatory amplitude for the theta (4 – 8 Hz), alpha (8 – 1 

13 Hz), beta (13 – 30 Hz) and low gamma (30 – 50 Hz) bands, were derived using a 2 

Beamformer approach on a 5 mm grid (Gross et al., 2001, Robinson and Vrba, 1998, 3 

Sekihara et al., 2001, Van Drongelen et al., 1996, Van Veen et al., 1997, Brookes et al., 2004, 4 

Brookes et al., 2008) spanning the whole brain. For all voxels and frequency bands, the 5 

difference in mean amplitude envelope between the hyperoxia and normoxia time windows 6 

(discarding transition periods) was computed and normalised by the normoxic value. 7 

Statistical significance in the difference between normoxia and hyperoxia was assessed using 8 

a Monte Carlo technique (Cheyne et al., 2003, Nichols and Holmes, 2002, Brookes et al., 9 

2010) in which 50 ‘fake’ pseudo-T statistical images were calculated with active and control 10 

windows randomly switched. Voxels were identified as having statistically significant 11 

changes if they fell in the upper 5th percentile of T-values computed in the randomised 12 

images. Spatial maps of percentage change in amplitude were created for the alpha, beta and 13 

gamma bands and registered to MNI space to allow group averaging.  14 

 15 

Regions of interest were probed further by assessing oscillatory activity across multiple 16 

narrow frequency bands using a beamformer approach; the 17 frequency bands used were: 1 17 

– 4 Hz, 2 – 6 Hz, 4 – 8 Hz, 6 – 10 Hz, 8 – 13 Hz, 10 – 15 Hz, 13 – 20 Hz, 15 – 25 Hz, 20 – 30 18 

Hz, 25 – 35 Hz, 30 – 40 Hz, 35 – 45 Hz, 40 – 50 Hz, 45 – 55 Hz, 50 – 60 Hz, 55 – 65 Hz and 19 

60 – 80 Hz. We chose to probe three brain locations in which changes had been previously 20 

observed for hypercapnia; the occipital lobe (MNI [-8 -80 -6] mm), the right motor cortex 21 

(MNI [34 -24 54] mm) (Hall et al., 2011) and the medial frontal cortex (MNI [-2 36 32] mm), 22 

an area associated with cognitive processing in working memory (Brookes et al., 2010). 23 

Oscillatory amplitude envelopes for each frequency band were averaged across periods of 24 

hyperoxia and normoxia, and the resulting spectra averaged across subjects. Significant 25 

differences (where p < 0.05) between hyperoxia and normoxia were tested using a non-26 

parametric Wilcoxon signed rank test with Bonferroni correction for multiple comparisons.  27 
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RESULTS 1 

Experiment 1: PC-MRI flow measurement under hyperoxia and hypercapnia: One of the six 2 

subjects was excluded due to the tortuous configuration of their ICAs, preventing the imaging 3 

slice being placed perpendicular to both left and right ICA simultaneously. The mean 4 

hyperoxic step (± standard error in mean (SEM)) was 460 ± 13 mmHg, with a baseline of 111 5 

± 7 mmHg averaged across subjects, while PETCO2 varied by less than 1 mmHg.  The mean 6 

hypercapnic step was 4.2 ± 0.5 mmHg, while PETO2 varied by less than 1 mmHg.  7 

Hyperoxia did not cause a significant change in MBF (paired t-test, power = 0.8, p = 0.80), 8 

with a 95 % confidence interval of -3.2 to  + 3.3 %, suggesting that less than 5 % of results 9 

would show the 4 % reduction in MBF reported in previous literature to a comparable 10 

increase in FiO2 of 0.6 (Bulte et al., 2007b). Further, the MDC at a significance of p = 0.05, 11 

assessed from repeated measures of normoxic MBF, was found to be 3.6 %, again less than 12 

the MBF change reported previously. As expected, an increase in MBF occurred during 13 

hypercapnia compared to normoxia of 6.8 ± 1.5 % per mmHg CO2 (power = 0.08, p = 0.03). 14 

Figure 2D shows the variation in MBF across the cardiac cycle during normoxia, hyperoxia 15 

and hypercapnia averaged across subjects. 16 

 17 

Experiment 2: aCBV response to hyperoxia: The mean hyperoxic step (± SEM) was 486 ± 12 18 

mmHg, with a baseline of 119 ± 1 mmHg averaged across subjects, while PETCO2 varied by 19 

less than 2 mmHg. Figure 3A shows the aCBV-weighted LL-FAIR ASL data in a 20 

representative subject, from which the mean GM aCBV was measured to be 1.2 ± 0.4 % 21 

during normoxia and 1.1 ± 0.3 % during hyperoxia. This reduction was not significant (power 22 

= 0.8, p = 0.64, paired t-test), with a 95 % confidence interval of -0.21 to + 0.31 %. There 23 

was no significant change in mean arterial transit time, 〉a which was found to be 318 ± 7 ms 24 

during normoxia and 309 ± 4 ms during hyperoxia (power = 0,8, p = 0.68, paired t-test), with 25 

a 95% confidence interval of -69 to +95 ms.  26 

 27 

Experiment 3: MEG response to hyperoxia: The mean hyperoxic step was 471 ± 13 mmHg, 28 

with a baseline of 116 ± 3 mmHg averaged across subjects, while PETCO2 varied by less than 29 

1 mmHg. Figure 4A depicts the group averaged maps of neural oscillatory amplitude in 30 

response to hyperoxia in the alpha, beta and gamma frequency bands. For comparison, the 31 

equivalent images for a similar hypercapnia study (Hall et al., 2011) are also shown (Figure 32 

4B). Whereas hypercapnia elicited large scale, robust changes in MEG measured oscillatory 33 

amplitude, the equivalent changes observed using hyperoxia involve small focal areas of 34 
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amplitude reduction, predominantly in occipital brain areas. Figure 4C shows the difference 1 

in oscillatory response between hypercapnia and hyperoxia, with a positive difference during 2 

hypercapnia shown in blue and during hyperoxia in red. It should be noted that regions in red 3 

are predominantly in the cerebellum, spatial locations where the SNR of MEG is limited. 4 

Maps of change in the theta band (not shown) showed no robust changes for either hyperoxia 5 

or hypercapnia.  6 

 7 

Figures 4Di-iii  show the spectral changes in neural oscillatory amplitude elicited by 8 

hyperoxia and hypercapnia (Hall et al., 2011) in three selected brain regions. Figures 4Ei-iii  9 

show the corresponding changes in amplitude across the alpha, beta and gamma band. As 10 

also seen in Figure 4A, the most pronounced change occurred in the occipital lobe (MNI [-8 -11 

80 -6] mm) where a significant reduction in amplitude (Wilcoxon signed rank test, p<0.05) 12 

was observed in the 10 - 40 Hz band.  13 

 14 

DISCUSSION 15 

The increasing use of hyperoxia as a tool for studying cortical haemodynamics and 16 

calibrating the BOLD effect, creates an urgent need to understand the impact of hyperoxia on 17 

brain physiology. In this paper we show that isocapnic hyperoxia causes no significant effect 18 

on MBF as measured with PC-MRI or aCBV as measured with LL-FAIR ASL. We also show 19 

that hyperoxia causes a smaller and more focal change in neural oscillatory activity, as 20 

characterised by MEG, compared to hypercapnia.  21 

 22 

MBF sensitivity to hyperoxia was measured in the carotid arteries to give maximum 23 

sensitivity to global changes in CBF. A phase contrast based MR method was used to 24 

measure MBF to ensure insensitivity to any changes in the T1 relaxation time of the blood or 25 

tissue due to hyperoxia. Whilst measurement in the carotid arteries alone neglects the 26 

posterior contribution to global CBF, it has been shown that the anterior circulation provides 27 

up to 82 % of cortical flow (Boyajian et al., 1995, Zhao et al., 2007), with both systems 28 

reacting equally to external stimuli (Field et al., 2003). It was not possible to also collect PCA 29 

data from both the anterior and posterior circulations in a reasonable acquisition time.  30 

 31 

We found no change in grey matter aCBV during hyperoxia. aCBV was assessed since ASL 32 

measurements of aCBV have much higher sensitivity than ASL measurements of CBF 33 

(Brookes et al., 2007, Zheng et al., 2002). Furthermore, aCBV reflects vasoconstriction of the 34 
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arterioles which controls blood flow through the capillaries and hence tissue perfusion, and 1 

the aCBV compartment is known to be more responsive to activation compared to the venous 2 

blood volume (Lee et al., 2001, Brookes et al., 2007, Kim et al., 2007). However the effect of 3 

hyperoxia on total CBV is also under debate (Kolbitsch et al. 2002). aCBV was measured 4 

using LL-FAIR ASL which is a multiphase readout ASL sequence, allowing aCBV and 5 

arterial transit time to be fitted simultaneously. This is important since a change blood flow is 6 

often also accompanied by a change in transit time, and these changes may act in opposition. 7 

Therefore if a constant transit time is assumed at a single inversion time, changes in aCBV 8 

may be masked. The reduction in T1blood that occurs during hyperoxia can cause an apparent 9 

change in the ASL aCBV weighted signal in the absence of any actual change in aCBV. In 10 

this work we took account of this effect by fitting the aCBV data assuming a reduction in 11 

T1blood during hyperoxia (from 2200 ms at normoxia to 1986 ms at hyperoxia), where these 12 

values were estimated by extrapolating from the literature values at other field strengths and 13 

levels of oxygenation.  14 

 15 

To investigate the effect of neglecting such a reduction in T1blood on the fitted value of aCBV, 16 

the aCBV weighted signal was simulated using the LL-FAIR ASL sequence timings used in 17 

this experiment (Brookes et al., 2007), with additional simulation parameters given in Table 18 

2. Simulating aCBV weighted LL-FAIR ASL data (100 iterations, SNR = 100:1) with T1blood 19 

of 1892 ms (for hyperoxia) and fitting the data assuming T1blood of 2200 ms (normoxia value) 20 

led to aCBV being underestimated by 10 ± 0.3 % (error in fitted mean ± SEM across 21 

iterations), while 〉arterial remained largely unaffected (underestimated by 0.6 ± 0.5 %). Maleki 22 

et al. (2011) similarly showed that CBF changes would be underestimated if the effect of 23 

hyperoxygenation on blood T1 was ignored and a further study showed no change in CBF 24 

when correcting for the arterial blood T1 decrease (Zaharchuk et al., 2008, Maleki et al., 25 

2011). The aCBV signal is derived solely from the arterial blood compartment due to the 26 

suppression of the tissue signal by the rapid sequence of high flip angle pulses, and therefore 27 

it is insensitive to any changes in tissue T1 which in any case are likely to be small in the 28 

brain. Although this simulation was carried out for aCBV weighted ASL data, these results 29 

highlight the more general importance of accounting for any change in T1blood when fitting 30 

ASL signal curves for both aCBV and CBF quantification. 31 

 32 

The PC-MRI blood flow results of a 6.8 ± 1.5 % per mmHg CO2 change in response to 33 

hypercapnia are in line with previous literature (Mark et al., 2011, Davis et al., 1998, Bulte et 34 
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al., 2009, Ito et al., 2003, Rostrup et al., 2000). The hyperoxia results presented here support 1 

the findings of a recent ASL study (Mark et al., 2011) which found no significant change in 2 

GM CBF in response to isocapnic hyperoxia. However, that ASL study did not correct for a 3 

change in T1 blood relaxation time which would have led to an underestimation of CBF, 4 

potentially masking an actual increase CBF. It is likely that previously reported reductions in 5 

CBF during hyperoxia measured with PC MRI can be attributed to the hypocapnia 6 

accompanying the hyperoxia since CO2 changes were not controlled (Rostrup et al., 1995, 7 

Watson et al., 2000). It should be noted that the MBF and aCBV measures were from a 8 

modest sample size in comparison to previous studies. However, previous reports of 9 

vasoconstrictive effects of hyperoxia (Bulte et al., 2007b, Watson et al., 2000, Rostrup et al., 10 

2000, Rostrup et al., 1995) fall outside of the 95% confidence interval for our reported 11 

measures of both MBF and aCBV, therefore it is likely that a change of such magnitude 12 

would have been measured within this experimental design. 13 

 14 

This study also found that hyperoxia produces small focal changes in spontaneous MEG 15 

signals. This was compared to previous studies that reported that hypercapnia had a global 16 

effect of greater amplitude (Hall et al., 2011, Thesen et al., 2012). Both of these findings 17 

could significantly impact on the fundamental assumptions regarding the isometabolic nature 18 

of hyperoxia and hypercapnia for calibrated BOLD, albeit hyperoxia to a lesser extent. 19 

Although there is no direct causal link between neuronal oscillations and changes in CMRO2, 20 

it is believed that MEG signals are generated by synchronised, post-synaptic current flow in 21 

the dendrites of pyramidal neurons, and theoretical evidence (Attwell and Laughlin, 2001) 22 

suggests that the majority of energy use in the brain is involved with similar post synaptic 23 

events. This suggests that a change in the MEG signal is indirectly associated with energy 24 

demand. This has been supported by invasive studies in animals (Logothetis et al., 2001) and 25 

humans (Mukamel et al., 2005, Ossandon et al., 2011, Ossandon et al., 2012), as well as non-26 

invasive studies using MEG (Brookes et al., 2005, Singh et al., 2003, Zumer et al., 2010, 27 

Stevenson et al., 2011, Winterer et al., 2007) which suggest a relationship between task 28 

driven modulations of neural oscillations and the BOLD response. Furthermore recent 29 

evidence (Murphy et al., 2013) shows that hypercapnia induces measurable, spatially-30 

dependent changes in CMRO2 which are in good agreement with the electrophysiological 31 

oscillatory changes previously reported (Hall et al., 2011). Therefore it seems unlikely that 32 

the changes in neural oscillations observed in Figures 4 and 5 can occur without concomitant 33 

changes in cerebral energetics.  34 
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 1 

Alpha activity is often most prominent in the occipital lobe, where it is thought to reflect 2 

activity of the thalamo-cortical loop; increasing in an eyes-closed wakeful resting state and 3 

decreasing when the eyes are opened (Berger, 1929). The significant reduction in amplitude 4 

of low frequency neural oscillations in the occipital lobe is consistent with the reduction in 5 

alpha power in previous EEG recordings (Seo et al., 2007a). Traditionally, alpha activity was 6 

thought to reflect cortical idling (Lopes da Silva et al., 1973, Berger, 1929, Niedermeyer and 7 

Lopes da Silva, 1999), more recently, this has been updated to include the notion that 8 

increased alpha activity represents increased functional inhibition (Jensen and Mazaheri, 9 

2010, Jensen et al., 2012, Klimesch et al., 2007, Thut et al., 2006). The reduction in alpha in 10 

response to hyperoxia in the occipital lobe may arise due to the greater sensitivity to alpha 11 

power in this area, or reflect an increase in vigilance with supplementary O2 (Moss et al., 12 

1998). Hyperoxia has been shown to enhance cognitive function to include long term 13 

memory (Moss et al., 1998), working memory and word recall . The dynamic relationship 14 

between altered vigilance, task performance and cerebral metabolism under hyperoxia needs 15 

further investigation. Confounding effects due to patient discomfort and somatosensory 16 

activation are reduced as it is difficult to perceive the difference between inspiring high levels 17 

of oxygen required for hyperoxia and medical air, as highlighted by its use in placebo-18 

controlled trials (Ozkurt et al., 2012, Moss et al., 1998, Cohen et al., 2009).  19 

 20 

These results have important implications for calibrated BOLD measurements using 21 

hyperoxia (Chiarelli et al., 2007b, Goodwin et al., 2009, Driver et al., 2012), and the more 22 

recent combined O2 and CO2 calibrated BOLD methods (Gauthier and Hoge, 2012, Bulte et 23 

al., 2012). The results imply that hyperoxia based methods of BOLD calibration need not be 24 

corrected for changes in baseline CBF or CBV (Chiarelli et al., 2007b) (hypercapnia based 25 

BOLD calibration does not require any such correction since changes in CBF on hypercapnia 26 

are implicit in the method). Hyperoxia can also be used to investigate vascular function and 27 

structure, as highlighted by its recent use in venous CBV estimations (Blockley et al., 2012) 28 

and vessel size imaging (Shen et al., 2011), techniques for which the lack of an effect of 29 

hyperoxia on blood flow is important.  30 

 31 

The altered neural oscillatory processes induced by both hyperoxia and hypercapnia (Hall et 32 

al., 2011) will indeed impact on the assumption of iso-metabolism made in BOLD 33 

calibration. However, we find that isocapnic hyperoxia induces neural oscillatory changes 34 
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that are smaller in magnitude and spatial extent across subjects compared to iso-oxic 1 

hypercapnia which implies that isocapnic hyperoxia is a more appropriate stimulus than 2 

hypercapnia for calibrating the BOLD response (Chiarelli et al., 2007b). This said, the small 3 

focal effect of hyperoxia on neural signals remains significant, suggesting that further 4 

investigation is required in order to determine if the observed change may lead to an 5 

under/overestimation of CMRO2 in these areas. The significant but differential effects of 6 

hyperoxia and hypercapnia on neural oscillatory processes may be of even greater importance 7 

to the more recent combined calibrated BOLD models (Bulte et al., 2012, Gauthier and Hoge, 8 

2012).  Further investigation would allow quantification of separate hyperoxia and 9 

hypercapnia CMRO2 error terms in order to gain equivalent calibration constants which can 10 

then be combined  11 

 12 

CONCLUSION 13 

This study addresses the main physiological assumptions made in hyperoxia-based calibrated 14 

BOLD, and has found no significant effect of isocapnic hyperoxia on GM aCBV or global 15 

MBF in the internal carotid arteries. While hyperoxia was shown to produce significant 16 

changes in neuronal oscillations consistent with increased vigilance as measured using source 17 

localised MEG, the changes were both more focal and of significantly smaller amplitude than 18 

observed with hypercapnia (Hall et al., 2011). This supports the use of hyperoxia in 19 

preference to hypercapnia for calibrating the BOLD response (Chiarelli et al., 2007b), 20 

however further investigation is needed on the impact of changes in neuronal oscillations on 21 

CMRO2 consumption and the precision of combined hyperoxia-hypercapnia calibration.  22 

23 
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TABLES: 1 

 2 

Table 1: Effect of hyperoxia and hypercapnia compared to normoxia (mean ± SEM) on mean 3 

blood flow (MBF) averaged over left and right ICA, mean aCBV, arterial transit time 4 

(arterial). Data averaged across all subjects. * denotes a significant change where p<0.05.  5 

 6 

Table 2: Parameters used to simulate aCBV data (Brookes et al. 2007; Francis et al. 2008) 7 

8 
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Table 1 1 

 Normoxia Hyperoxia Hypercapnia 

MBF (ml/min) 201  11 201  12 272  14* 

aCBV 1.3  0.4 1.2  0.3 -- 

arterial (ms) 0.32  0.07 0.31  0.04 -- 

2 
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Table 2 1 

Parameter Value 

Blood volume, aCBV (%) 

(assumed using a mean arterial 

 flow rate F of 180 ml/100g and exchange time, 〉, of 800 

ms) (model described in (Brookes et al., 2007, Zheng et al., 

2002). 

2.4 

Longitudinal relaxation time of tissue, T1tissue (ms) ((Rooney 

et al., 2007) 

2200 

Arterial transit time, 〉arterial (ms) 100 

Bolus duration, W (ms) 1200 

Equilibrium magnetisation, M0 1 

Simulated T1blood (ms) at 7T for FiO2 (%) = 0.2, 0.4, 0.6, 

0.8, 1.0 

(Extrapolated from (Rooney et al., 2007) and (Bulte et al. 

2007b)) 

2200, 2144 

2090, 2037, 1986 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

11 
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FIGURES 1 

Figure 1: Targeted respiratory paradigms for A) Experiment 1; isocapnic hyperoxia (PETO2 = 2 

500 mmHg) followed by 2 cycles of iso-oxic hypercapnia (subject specific baseline PETCO2 + 3 

8 mmHg) B) Experiment 2; isocapnic hyperoxia (PETO2 = 500 mmHg), PETCO2 targeted at 4 

subject-specific baseline throughout and C) Experiment 3; 2 cycles of isocapnic hyperoxia 5 

(PETO2 = 500 mmHg), PETCO2 targeted at subject-specific baseline throughout. Requested 6 

end tidal pressure of O2 is traced in black and CO2 in grey.    7 

 8 

Figure 2: A) 2D sagittal phase-contrast angiogram for localisation of the 2D PC-MR imaging 9 

slice (dashed white line) perpendicular to left and right internal carotid arteries, and 2D PC-10 

MRI modulus B) and phase C) images. D) The effect of normoxia (grey solid line), hyperoxia 11 

(black solid line) and hypercapnia (black dashed line) on the mean blood flow (MBF) 12 

waveform averaged across subjects. Averaging over the left and right ICA and 16 cardiac 13 

phases provides an MBF of 201 ml/min for normoxia, 201 ml/min for hyperoxia and 272 14 

ml/min for hypercapnia, whilst the peak of the waveform provides peak blood flow (268 15 

ml/min for normoxia, 254 ml/min for hyperoxia and 391 ml/min for hypercapnia). Error bars 16 

indicate the standard error of mean. 17 

 18 

Figure 3: A) Example perfusion weighted LL-FAIR aCBV data. The effective post label 19 

delay is given in milliseconds. B) GM aCBV weighted normalised LL ASL signal curves at 20 

normoxia (grey solid line) and hyperoxia (black solid line). Data averaged across subjects. 21 

Error bars indicate the standard error of mean. 22 

 23 

Figure 4:  A) Group maps of the significant reductions in neural oscillatory amplitude in 24 

response to hyperoxia (3-15%), in the alpha (8-13Hz), beta (13-30 Hz) and gamma (30-50 Hz) 25 

bands. B) This is contrasted with previously reported  reductions from a hypercapnic stimulus  26 

(3-15 %) (Hall et al. 2011) which produced a robust global desynchronisation, evident across 27 

all subjects. C) The regions where a hypercapnia induced change is greater than a hyperoxia 28 

induced change are shown in dark/light blue (0.5-7%). Regions where a hyperoxia induced 29 

change are greater are shown in red/yellow (0.5-7%). In the hyperoxic case, changes are 30 

smaller in magnitude and spatial extent, and are less robust across subjects. The reduction in 31 

neural oscillatory power (mean ± SEM) was interrogated across D)i) the motor cortex,  ii)  the 32 

occipital lobe and iii)  the medial frontal cortex  in response to hyperoxia (black) and 33 



 

26 
 

hypercapnia (grey) (Hall et al. 2011).  E)i-iii)  This power change is further compared in the 1 

same regions across the alpha, beta and gamma band.  2 

 3 


