34 research outputs found

    A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans

    Get PDF
    Recombinant inbred lines (RILs) derived from Caenorhabditis elegans wild-type N2 and CB4856 are increasingly being used for mapping genes underlying complex traits. To speed up mapping and gene discovery, introgression lines (ILs) offer a powerful tool for more efficient QTL identification. We constructed a library of 90 ILs, each carrying a single homozygous CB4856 genomic segment introgressed into the genetic background of N2. The ILs were genotyped by 123 single-nucleotide polymorphism (SNP) markers. The proportion of the CB4856 segments in most lines does not exceed 3%, and together the introgressions cover 96% of the CB4856 genome. The value of the IL library was demonstrated by identifying novel loci underlying natural variation in two ageing-related traits, i.e. lifespan and pharyngeal pumping rate. Bin mapping of lifespan resulted in six QTLs, which all have a lifespan-shortening effect on the CB4856 allele. We found five QTLs for the decrease in pumping rate, of which four colocated with QTLs found for average lifespan. This suggests pleiotropic or closely linked QTL associated with lifespan and pumping rate. Overall, the presented IL library provides a versatile resource toward easier and efficient fine mapping and functional analyses of loci and genes underlying complex traits in C. elegans

    RNA silencing is required for Arabidopsis defence against Verticillium wilt disease

    Get PDF
    RNA silencing is a conserved mechanism in eukaryotes that plays an important role in various biological processes including regulation of gene expression. RNA silencing also plays a role in genome stability and protects plants against invading nucleic acids such as transgenes and viruses. Recently, RNA silencing has been found to play a role in defence against bacterial plant pathogens in Arabidopsis through modulating host defence responses. In this study, it is shown that gene silencing plays a role in plant defence against multicellular microbial pathogens; vascular fungi belonging to the Verticillium genus. Several components of RNA silencing pathways were tested, of which many were found to affect Verticillium defence. Remarkably, no altered defence towards other fungal pathogens that include Alternaria brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina, but also the vascular pathogen Fusarium oxysporum, was recorded. Since the observed differences in Verticillium susceptibility cannot be explained by notable differences in root architecture, it is speculated that the gene silencing mechanisms affect regulation of Verticillium-specific defence responses

    Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica

    Get PDF
    Sorghum is an important food, feed, and industrial crop worldwide. Parasitic weeds of the genus Striga constitute a major constraint to sorghum production, particularly in the drier parts of the world. In this study we analysed the Striga germination stimulants, strigolactones, in the root exudates of 36 sorghum genotypes and assessed Striga germination and infection. Low germination-stimulating activity and low Striga infection correlated with the exudation of low amounts of 5-deoxystrigol and high amounts of orobanchol, whereas susceptibility to Striga and high germination- stimulating activity correlated with high concentrations of 5-deoxystrigol and low concentrations of orobanchol. Marker analysis suggested that similar genetics to those previously described for the resistant sorghum variety SRN39 and the susceptible variety Shanqui Red underlie these differences. This study shows that the strigolactone profile in the root exudate of sorghum has a large impact on the level of Striga infection. High concentrations of 5-deoxystrigol result in high infection, while high concentrations of orobanchol result in low infection. This knowledge should help to optimize the use of low germination stimulant-based resistance to Striga by the selection of sorghum genotypes with strigolactone profiles that favour normal growth and development, but reduce the risk of Striga infection.</p

    GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana.

    No full text
    Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA) mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA) position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature

    Duurzame teeltsystemen met LEDs

    No full text
    To combine the development towards sustainable and climate-neutral cultivation systems for all-electric greenhouses with lighting, efficient lighting systems such as LEDs are essential. LEDs have a high energy-efficiency and make it possible to apply dynamic light recipes, in which light intensity and spectral composition can be varied throughout the day and during the cultivation depending on the developmental stage of the crop. Knowledge on the effects of light spectrum is still limited for most crops, as well as the effect of spectral composition on the control of pests and diseases in the crop. In this project, we took an integrated approach that combines research on the effects of dynamic light spectra on the growth and production of eggplant, tomatoes and cucumbers with the effects on plant resistance to pests and diseases, incorporating the underlying physiological and genetic processes. The behavior of pests and natural enemies has been further investigated in chrysanthemum and sweet pepper. The results indicate that growth and production of greenhouse grown crops can be controlled with the light spectrum, whereby resistance to diseases and pests is a precondition

    Interfamily Transfer of Tomato Ve1 Mediates Verticillium Resistance in Arabidopsis1[C][W][OA]

    No full text
    Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance

    Optimized Agroinfiltration and Virus-Induced Gene Silencing to Study Ve1-Mediated Verticillium Resistance in Tobacco

    No full text
    Recognition of pathogen effectors by plant immune receptors often leads to the activation of a hypersensitive response (HR), which is a rapid and localized cell death of plant tissue surrounding the site at which recognition occurs. Due to its particular amenability to transient assays for functional genetics, tobacco is a model for immune signaling in the Solanaceae plant family. Here, we show that coexpression of the tomato (Solanum lycopersicum) immune receptor Ve1 and the corresponding Verticillium effector protein Ave1 leads to HR only in particular tobacco species. Whereas HR is obtained in Nicotiana tabacum, no such response is obtained in N. benthamiana. Furthermore, our analysis revealed an endogenous Ve1 ortholog in Nicotiana glutinosa, as expression of Ave1 in absence of Ve1 induced a HR, and N. glutinosa was found to be resistant against race 1 Verticillium dahliae. We furthermore report the establishment of virus-induced gene silencing in N. tabacum for functional analysis of Ve1 signaling. Collectively, our data show that N. tabacum can be used as a model plant to study Ve1-mediated immune signaling

    The DCMU Herbicide Shapes T-cell Functions By Modulating Micro-RNA Expression Profiles

    Get PDF
    International audienceDCMU [N-(3,4-dichlorophenyl)-N-dimethylurea] or diuron is a widely used herbicide, which can cause adverse effects on human, especially on immune cells, due to their intrinsic properties and wide distribution. These cells are important for fighting not only against virus or bacteria but also against neoplastic cell development. We developed an approach that combines functional studies and miRNA and RNA sequencing data to evaluate the effects of DCMU on the human immune response against cancer, particularly the one carried out by CD8+ T cells. We found that DCMU modulates the expression of miRNA in a dose-dependent manner, leading to a specific pattern of gene expression and consequently to a diminished cytokine and granzyme B secretions. Using mimics or anti-miRs, we identified several miRNA, such as hsa-miR-3135b and hsa-miR-21-5p, that regulate these secretions. All these changes reduce the CD8+ T cells’ cytotoxic activity directed against cancer cells, in vitro and in vivo in a zebrafish model. To conclude, our study suggests that DCMU reduces T-cell abilities, participating thus to the establishment of an environment conducive to cancer development
    corecore