29 research outputs found

    Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    Get PDF
    BackgroundInfections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies

    Human CD4 +

    No full text

    Regulatory CD4+Foxp3+ T cells control the severity of anaphylaxis.

    Get PDF
    OBJECTIVE: Anaphylaxis is a life-threatening outcome of immediate-type hypersensitivity to allergen, consecutive to mast cell degranulation by allergen-specific IgE. Regulatory T cells (Treg) can control allergic sensitization and mast cell degranulation, yet their clinical benefit on anaphylactic symptoms is poorly documented. Here we investigated whether Treg action during the effector arm of the allergic response alleviates anaphylaxis. METHODS: We used a validated model of IgE-mediated passive systemic anaphylaxis, induced by intravenous challenge with DNP-HSA in mice passively sensitized with DNP-specific IgE. Anaphylaxis was monitored by the drop in body temperature as well as plasma histamine and serum mMCP1 levels. The role of Treg was analyzed using MHC class II-deficient (Aβ(°/°)) mice, treatment with anti-CD25 or anti-CD4 mAbs and conditional ablation of Foxp3(+) Treg in DEREG mice. Therapeutic efficacy of Treg was also evaluated by transfer experiments using FoxP3-eGFP knock-in mice. RESULTS: Anaphylaxis did not occur in mast cell-deficient W/W(v) mutant mice and was only moderate and transient in mice deficient for histamine receptor-1. Defects in constitutive Treg, either genetic or induced by antibody or toxin treatment resulted in a more severe and/or sustained hypothermia, associated with a rise in serum mMCP1, but not histamine. Adoptive transfer of Foxp3(+) Treg from either naïve or DNP-sensitized donors similarly alleviated body temperature loss in Treg-deficient DEREG mice. CONCLUSION: Constitutive Foxp3(+) Treg can control the symptomatic phase of mast cell and IgE-dependent anaphylaxis in mice. This might open up new therapeutic avenues using constitutive rather than Ag-specific Treg for inducing tolerance in allergic patients

    Intradermal immunisation using the TLR3-ligand Poly (I:C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection

    No full text
    International audienceDevelopment of vaccines able to induce mucosal immunity in the genital and gastrointestinal tracts is a major challenge to counter sexually transmitted pathogens such as HIV-1 and HSV-2. Herein, we showed that intradermal (ID) immunisation with sub-unit vaccine antigens (i.e., HIV-1 gp140 and HSV-2 gD) delivered with Poly(I:C) or CpG1668 as adjuvant induces long-lasting virus-specific immunoglobulin (Ig)-G and IgA antibodies in the vagina and feces. Poly(I:C)-supplemented sub-unit viral vaccines caused minimal skin reactogenicity at variance to those containing CpG1668, promoted a delayed-type hypersensitivity (DTH) to the vaccine and protected mice from genital and neurological symptoms after a lethal vaginal HSV-2 challenge. Interestingly, Poly(I:C12U) (Ampligen), a Poly(I:C) structural analogue that binds to TLR3 but not MDA-5, promoted robust mucosal and systemic IgG antibodies, a weak skin DTH to the vaccine but not IgA responses and failed to confer protection against HSV-2 infection. Moreover, Poly(I:C) was far superior to Poly(I:C12U) at inducing prompt and robust upregulation of IFNß transcripts in lymph nodes draining the injection site. These data illustrate that ID vaccination with glycoproteins and Poly(I:C) as adjuvant promotes long-lasting mucosal immunity and protection from genital HSV-2 infection, with an acceptable skin reactogenicity profile. The ID route thus appears to be an unexpected inductive site for mucosal immunity and anti-viral protection suitable for sub-unit vaccines. This works further highlights that TLR3/MDA5 agonists such as Poly(I:C) may be valuable adjuvants for ID vaccination against sexually transmitted diseases

    Mouse and Human Liver Contain Immunoglobulin A–Secreting Cells Originating From Peyer's Patches and Directed Against Intestinal Antigens

    No full text
    International audienceBACKGROUND & AIMS: The liver receives blood from the gastrointestinal tract through the portal vein, and thereby is exposed continuously to dietary antigens and commensal bacteria. Alcoholic liver disease (ALD) is associated with intestinal dysbiosis, increased intestinal permeability, release of microbes into the portal circulation, and increased serum levels and liver deposits of IgA. We characterized B-cell production of IgA in livers of mice at homeostasis, after oral immunization, in a mouse model of ALD and in human liver samples. METHODS: We performed studies with Balb/c and C57BL/6-Ly5.1 mice, as well as transgenic mice (quasimonoclonal, activation-induced [cytidine] deaminase-Cre-tamoxifen-dependent estrogen receptor 2 [ERT2], Blimp-1-green fluorescent protein [GFP]). C57BL/6-Ly5.1 mice were fed chronic plus binge ethanol to create a model of ALD. Some mice also were given repeated injections of FTY720, which prevents egress of IgA-secreting cells from Peyer's patches. We obtained nontumor liver tissues from patients with colorectal carcinoma undergoing surgery for liver metastases or hepatocellular carcinoma. B cells were isolated from mouse and human liver tissues and analyzed by flow cytometry and enzyme-linked ImmunoSpot (ELISpot). In wild-type and transgenic mice, we traced newly generated IgA-secreting cells at steady state and after oral immunization with 4-hydroxy-3-nitrophenylacetyl (NP)-Ficoll or cholera toxin. IgA responses were also evaluated in our model of ALD. RESULTS: Livers of control mice contained proliferative plasmablasts that originated from Peyer's patches and produced IgAs reactive to commensal bacteria. After oral immunization with cholera toxin or a thymus-independent antigen, a substantial number of antigen-specific IgA-secreting cells was found in the liver. Mice fed ethanol had features of hepatitis and increased numbers of IgA-secreting cells in liver, compared with mice given control diets, as well as higher levels of serum IgA and IgA deposits in liver sinusoids. Injection of FTY720 during ethanol feeding reduced liver and serum levels of IgA and IgA deposits in liver and prevented liver injury. Human liver tissues contained a significant proportion of IgA-producing plasma cells that shared phenotypic and functional attributes with those from mouse liver, including reactivity to commensal bacteria. CONCLUSIONS: Based on studies of mice and human liver tissues, we found the liver to be a site of IgA production by B cells, derived from gut-associated lymphoid tissues. These IgAs react with commensal bacteria and oral antigens. Livers from mice with ethanol-induced injury contain increased numbers of IgA-secreting cells and have IgA deposits in sinusoids. IgAs in the liver could mediate clearance of gut-derived antigens that arrive through portal circulation at homeostasis and protect these organs from pathogen

    The TLR7 agonist R848 alleviates allergic inflammation by targeting invariant NKT cells to produce IFN-gamma

    No full text
    It has been documented that TLR7 stimulation triggers not only antiviral responses, but also alleviates experimental asthma. Considering the implication of invariant NKT (iNKT) cells in both situations, we postulated that they might contribute to the anti-inflammatory effect of TLR7 ligands. We show in this study that spleen cells activated by the TLR7 agonist resiquimod (R848) attenuate allergic inflammation upon adoptive transfer when they are recovered from wild-type, but not from iNKT cell-deficient Jα18(-/-) mice, which proves the specific involvement of this regulatory population. Furthermore, we provide evidence that IFN-γ is critical for the protective effect, which is lost when transferred iNKT cells are sorted from IFN-γ-deficient mice. In support of a direct activation of iNKT cells through TLR7 signaling in vivo, we observed a prompt increase of serum IFN-γ levels, associated with upregulation of CD69 expression on iNKT cells. Moreover, we demonstrate that iNKT cells effectively express TLR7 and respond to R848 in vitro by producing high levels of IFN-γ in the presence of IL-12, consistent with the conclusion that their contribution to the alleviation of allergic inflammation upon treatment with TLR7 ligands is mediated through IFN-γ.status: publishe

    Gut inflammation in mice triggers proliferation and function of mucosal foxp3(+) regulatory T cells but impairs their conversion from CD4(+) T cells

    No full text
    Background and Aims: Regulatory Foxp3(+) CD4(+) T cells [Tregs] have been implicated in the control of colitis in T-cell transfer models, yet their ability to regulate colitis induced by innate immunity and the impact of gut inflammation on their fate and function have been poorly documented.Methods: Colitis was induced by dextran sodium sulphate in DEREG transgenic mice. Tregs ablation and transfer experiments showd that Tregs could limit the severity of colitis in B6 mice.Results: Gut inflammation resulted in increased number of Tregs in mesenteric lymph nodes [MLN] and colon lamina propria [LP], although their frequency decreased due to massive concomitant leukocyte infiltration. This coincided at both sites with a dramatic increase in Ki67(+) Tregs which retained proliferative capacity. Gut inflammation resulted in enhanced suppressive function of Tregs in colon lamina propria and neuropillin-1-[NRP1-] Treg in MLN. Real-time polymerase chain reaction analysis and flow cytometry [using IL10-egfp-reporter mice] showed that compared with NRP1(+) Treg, NRP1-Treg express higher levels of IL-10 transcripts and were enriched in IL10-expressing cells both in the steady state and during colitis. Moreover, Treg conversion in vivo from from naive CD4(+) T cells or Treg precursors was impaired in colitic mice. Finally, gut inflammation caused a decrease in intestinal dendritic cells, affecting both CD103(+) CD11b(+) and CD103(+) CD11b-subsets and affected their Treg conversion capacity.Conclusions: Together, our data indicate that non-specific colon inflammation triggers proliferation and suppressive function of Tregs in the lamina propria and MLN, but impairs their de novo conversion from CD4(+) T cells by intestinal dendritic cells
    corecore