346 research outputs found

    Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency

    Get PDF
    Affiliation: CHU-Sainte-Justine, Université de MontréalTransport mechanisms, whereby alimentary lipids are digested and packaged into small emulsion particles that enter intestinal cells to be translocated to the plasma in the form of chylomicrons, are impaired in cystic fibrosis. The purpose of this paper is to focus on defects that are related to intraluminal and intracellular events in this life-limiting genetic disorder. Specific evidence is presented to highlight the relationship between fat malabsorption and essential fatty acid deficiency commonly found in patients with cystic fibrosis that are often related to the genotype. Given the interdependency of pulmonary disease, pancreatic insufficiency and nutritional status, greater attention should be paid to the optimal correction of fat malabsorption and essential fatty acid deficiency in order to improve the quality of life and extend the life span of patients with cystic fibrosis

    CFTR Depletion Results in Changes in Fatty Acid Composition and Promotes Lipogenesis in Intestinal Caco 2/15 Cells

    Get PDF
    Abnormal fatty acid composition (FA) in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR) mutations. The mechanism(s) underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role.The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7)/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL), isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARalpha, LXRalpha, LXRbeta and RXRalpha).Collectively, our results indicate that CFTR depletion may disrupt FA homeostasis in intestinal cells through alterations in FA uptake and transport combined with stimulation of lipogenesis that occurs by an LXR/RXR-independent mechanism. These findings exclude a contributing role of CFTR in CF-associated fat malabsorption

    Insulin modulation of newly synthesized apolipoproteins B-100 and B-48 in human fetal intestine: Gene expression and mRNA editing are not involved

    Get PDF
    AbstractWe investigated insulin's effect on intestinal lipid transport and, particularly, the biogenesis of apolipoproteins crucial to lipoprotein secretion. Adding insulin (3 mU) to the serum-free medium of cultured jejunal explants from human fetuses (17–20 weeks) reduced triglyceride and chylomicron production and inhibited apo B-48 and apo B-100 secretion. When apo B mRNA was assayed by RT-PCR and its editing by primer extension, no change was detectable following the addition of insulin. HDL lipid content, apo A-1 synthesis and RNA level were unaffected by insulin. Collectively, these results suggest that the insulin-stimulated decline in intestinal chylomicron output may involve apo B co- or post-translational modifications

    Effects of Exercise Training on Molecular Markers of Lipogenesis and Lipid Partitioning in Fructose-Induced Liver Fat Accumulation

    Get PDF
    The present study was designed to investigate the impact of exercise training on lipogenic gene expression in liver and lipid partitioning following the ingestion of a high fructose load. Female rats were exercise-trained for 8 wk or kept sedentary before being submitted to a fasting/refeeding protocol. Rats were further subdivided as follow: rats were fasted for 24 h, refed a standard diet for 24 h, starved for another 24 h, and refed with a standard or a high-fructose diet 24 h before sacrifice. Fructose refeeding was associated with an increase in hepatic lipid content, endocannabinoid receptor 1, sterol regulatory element-binding protein1c, and stearoyl-CoA desaturase1 gene expression in both Sed and TR rats. However, desaturation indexes measured in liver (C16 : 1/C16 : 0 and C18 : 1/C18 : 0) and plasma (C18 : 1/C18 : 0) were higher (P < 0.01) in TR than in Sed rats following fructose refeeding. It is concluded that exercise training does not significantly affect fat accumulation and the molecular expression of genes involved in lipogenesis after fasting and fructose refeeding but does modify the partitioning of lipids so as to provide more unsaturated fatty acids in liver without affecting liver fat content

    Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers

    Get PDF
    Familial hypocholesterolemia, namely abetalipoproteinemia, hypobetalipoproteinemia and chylomicron retention disease (CRD), are rare genetic diseases that cause malnutrition, failure to thrive, growth failure and vitamin E deficiency, as well as other complications. Recently, the gene implicated in CRD was identified. The diagnosis is often delayed because symptoms are nonspecific. Treatment and follow-up remain poorly defined

    Особенности учета заработной платы на примере УФПС "Почта России"

    Get PDF
    Исследование системы учета труда и заработной платы в ФГУП "Почта России".Research of the system of account of labour and salary in ФГУП "Mail of Russia"

    Emergence of a broad repertoire of GAD65-specific T-cells in type 1 diabetes patients with graft dysfunction after allogeneic islet transplantation.

    Get PDF
    Islet transplantation is one of the most promising therapies for type 1 diabetes (T1D). A major issue in islet transplantation is the loss of graft function at late phase. Several studies suggested the involvement of islet-specific T-cells in such islet graft dysfunction. In this study, we investigated the breadth and type of glutamic acid decarboxylase 65 (GAD65)-specific T-cells in T1D patients after allogeneic islet transplantation. Peripheral blood mononuclear cells (PBMCs) were obtained from islet-transplanted T1D patients during insulin-independent period and cultured for 7 days with pools of GAD65 overlapping peptides in the presence of IL-2. Cytokine secretion profiles of peptide-reactive T-cells were analyzed after a short-term restimulation with the same peptides by a multiplex bead-based cytokine assay and by an intracytoplasmic cytokine detection assay. Robust GAD65-specific CD4(+) and CD8(+) T-cell responses were detected in patients who eventually developed chronic graft dysfunction. Multiple GAD65 peptides were found to induce specific T-cell responses in these patients, indicating that the repertoire of GAD65-specific T-cells was broad. Furthermore, GAD65-specific CD4(+) T-cells were composed of heterogeneous populations, which differentially expressed cytokines including IFN-γ and type 2 cytokines, but not IL-10. In contrast, patients who showed only marginal GAD65-specific T-cell responses maintained substantially longer graft survival and insulin independence. In conclusion, our study suggests that the emergence of islet-specific T-cells precedes the development of chronic graft dysfunction in islet-transplanted patients. Thus, our observations support the hypothesis that these islet-specific T-cells contribute to the development of chronic islet graft dysfunction

    Effects of Aging Stereotype Threat on Working Self-Concepts: An Event-Related Potentials Approach

    Get PDF
    Although the influence of stereotype threat (ST) on working self-concepts has been highlighted in recent years, its neural underpinnings are unclear. Notably, the aging ST, which largely influences older adults’ cognitive ability, mental and physical health, did not receive much attention. In order to investigate these issues, electroencephalogram (EEG) data were obtained from older adults during a modified Stroop task using neutral words, positive and negative self-concept words in aging ST vs. neutral control conditions. Results showed longer reaction times (RTs) for identifying colors of words under the aging ST compared to the neutral condition. More importantly, the negative self-concept elicited more positive late P300 amplitudes and enhanced theta band activities compared to the positive self-concept or neutral words under the aging ST condition, whereas no difference was found between these self-concepts and neutral words in the control condition. Furthermore, the aging ST induced smaller theta band synchronization and enhanced alpha band synchronization compared to the control condition. Moreover, we also observed valence differences in self-concepts where the negative self-concept words reduced early P150/N170 complex relative to neutral words. These findings suggest that priming ST could activate negative self-concepts as current working self-concept, and that this influence occurred during a late neural time course
    corecore