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Abstract We investigated insulin's effect on intestinal lipid 
transport and, particularly, the biogenesis of apolipoproteins 
crucial to lipoprotein secretion. Adding insulin (3 mU) to the 
serum-free medium of cultured jejunal explants from human 
fetuses (17-20 weeks) reduced triglyceride and chylomicron 
production and inhibited apo B-48 and apo B-100 secretion. 
When apo B mRNA was assayed by RT-PCR and its editing by 
primer extension, no change was detectable following the 
addition of insulin. HDL lipid content, apo A-1 synthesis and 
RNA level were unaffected by insulin. Collectively, these results 
suggest that the insulin-stimulated decline in intestinal chylomi- 
cron output may involve apo B co- or post-translational 
modifications. 
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1. Introduction 

Among  the most important  functions of  the intestine is the 
transport  of  dietary fat in the form of  lipoproteins [1]. The 
enterocyte is the unique site for chylomicron formation,  but is 
also a source for very-low-density l ipoprotein (VLDL) and 
high-density l ipoprotein (HDL)  production [2,3]. These nas- 
cent lipoproteins contain apoproteins (apo) A-I and B as the 
major  protein constituents [1-4]. 

The synthesis and secretion of  intestinal and hepatic lipo- 
proteins are exquisitely regulated by several factors, including 
hormones,  growth factors and nutrients. Much information 
related to this field has been acquired from studies focusing 
on various animal species. However,  our knowledge of  the 
regulation of  lipid transport  in humans, especially at the in- 
testinal level, remains elusive. Recently, we employed the 
model  of  jejunal organ culture to study the properties, devel- 
opment  and regulation of  nascent l ipoprotein particles [5,6]. 
Our findings demonstrated that human jejunal explants in 
culture retain a few of  the normal  biochemical functions of  
adult intestine, such as the ability to elaborate complex lipid 
macromolecules associated with apoproteins. This efficient lip- 
oprotein-lipid transport proved to be influenced by the devel- 
opmental  process and a certain number  of  hormones [5 7]. In 
particular, the addit ion of  insulin to the culture medium sig- 
nificantly decreased the output  of  chylomicrons [8]. In this 
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regard, the inhibition of  triglyceride secretion by insulin has 
been demonstrated in perfused rat livers, rat hepatocytes and 
HepG2, a human hepatoma cell line [9 12]. 

The aim of  this investigation was first to examine the effect 
of  insulin on the de novo synthesis of  intestinal apoproteins 
A-I and B, and second to determine whether changes in their 
production could be related to the level of  apo A-I and apo B 
m R N A .  Finally, the distribution of  the two distinct forms of  
apo B (B-100 and B-48) and the molecular mechanism of  their 
specific partitioning, referred to as apo B m R N A  editing 
[13,14], were evaluated under the action of  insulin. 

2. Materials and methods 

2.1. Intestinal specimens and culture conditions 
Tissues from fetuses ranging from 17 to 20 weeks in age were 

obtained from normal elective pregnancy terminations. No tissue 
was collected from cases associated with known fetal abnormality 
or fetal death legal abortion. Studies were approved by the Institu- 
tional Human Subject Review Board. The entire small intestine was 
immersed in Leibovitz L-15 medium (room temperature) containing 
garamycin (40 ~tg/ml) and brought immediately to the culture room. 
The proximal half of the intestine excluding the first 3 cm was used 
and defined as jejunum. 

The jejunum was cleansed of mesentery, split longitudinally, washed 
in culture medium, and cut into explants (3x 7 mm). Five to seven 
explants were randomly transferred onto lens paper with the mucosal 
side facing up in each organ culture dish (Falcon Plastics, Los An- 
geles, CA). Six dishes were used for each experimental condition. An 
amount of medium (0.8 ml) sufficient to dampen the lens paper was 
added. Explants were cultured in serum-free Leibovitz L-15 medium 
according to the technique described previously [5 8]. After a 3 h 
stabilization period, the medium was changed with a fresh one con- 
taining a final amount of 0.13 ~tmol/ml of unlabeled oleic acid at- 
tached to albumin. The preparation of oleate/albumin complex was 
prepared as detailed previously [5-8]. Insulin was added at concentra- 
tions of 3 mU/ml and intestinal explants were cultured for 42 h. 

2.2. De novo apolipoprotein synthesis." Pulse labeling of  intestinal 
explants and immunoprecipitation procedure 

Following the incubation period with unlabeled oleic acid to stimu- 
late the synthesis of apoproteins, jejunal explants were washed twice 
with methionine-free Leibovitz medium. They were, then, incubated in 
the same medium, containing unlabeled oleic acid, for 45 min in the 
presence of [35S]methionine (300 ~Ci/ml) with or without insulin. At 
the end of the labeling period, at 37°C, explants were washed (x  3) 
and homogenized in phosphate-buffered saline (20 mM sodium phos- 
phate, 145 mM NaC1, pH 7.4) containing 1% (w/v) Triton X-100, 
methionine (2 mM), phenylmethylsulfonyl fluoride (1 mM), and ben- 
zamidine (1 mM). Aliquots of tissue homogenates were precipitated 
with 20% trichloroacetic acid), and precipitates were washed three 
times with 5% trichloroacetic acid before the radioactivity was deter- 
mined in a Beckman liquid scintillation spectrometer. The homoge- 
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nates were also centrifuged (4°C) at 105 000 x g for 60 min in a 50-Ti 
rotor (Beckman, CA) and supernatants subsequently reacted with ex- 
cess apoprotein polyclonal antibodies for 18 h at 4°C. The immuno- 
precipitation of apo A-I and apo B was carried out with polyclonal 
antibodies obtained commercially (Boehringer, Quebec, Canada). 
Pansorbin (Calbiochem, CA) was then added, and the mixture was 
reincubated at 20°C for 60 min. The immunoprecipitates were washed 
extensively and analyzed by a linear 4-20'70 acrylamide gradient pre- 
ceded by a 3% stacking gel as described previously [7]. Gels were 
sectioned into 4-ram slices and counted after an overnight incubation 
at 20°C with 1 ml BTS-450 (Beckman) and 10 ml of liquid scintillation 
fluid (Ready Solv. NA, Beckman). 

2.3. Sample extraction and RT-PCR analysis 
After incubating explants in the presence or absence of insulin, total 

RNA was isolated as described by Chomczynski and Saccbi [15]. 
Single-strand cDNA was synthesized from the extracted and dena- 
tured RNA (5 min, 65°C) by the reverse transcriptase reaction, con- 
sisting of 1 mM dNTP (Pharmacia), 2.5 [aM pd (N)6 (Pharmacia), 200 
U superscript II RNAse H transcriptase (Gibco), 8 U RNAse inhibi- 
tor (Boehringer°Mannheim, Montreal, Canada), 50 mM Tris-HC1 (pH 
8.3), 3 mM MgCI2, 75 mM KC1 and 10 mM DTT. The mixture was 
incubated (10 min) at room temperature and reverse transcription was 
performed at 42°C for 2 h followed by inactivation (70°C for 15 min). 

The PCR amplification was performed in a mixture containing 5 [al 
of reverse transcribed reaction, 10 mM Tris-HCl (pH 8.3), 1.5 mM 
MgC12, 50 mM KCI, 1 [aM of each primer (lower and upper) and 2 U 
Tag DNA polymerase (Boehringer). The amplification of apo B and 
GAPDH was carried out in the same tissue with 30 cycles of dena- 
turation at 94°C for 30 s annealing at 56.3°C for 90 s, and extension 
at 72°C for 60 s, with a final 10 min extension at 72°C. Apo A-I was 
amplified using 25 cycles and annealing at 62°C with the same con- 
ditions as above. PCR products (A-I, 196 bp; B, 238 bp; GAPDH, 
384 bp) were separated with 6% polyacrylamide gel electrophoresis 
and quantified by Phosphorimager (Molecular Dynamics). 

The PCR primers used in this study are: 

Apo A-I : 

ApoB: 

GAPDH: 

minus:5'-CTG TGT ACG TGG ATG TGC-3' 
plus:5'-CCT TCT GTC TCC TTT TCC-3' 
minus:5'-CCT TCT GTC TCC TTT TCC-3' 
plus:5'-CAA TCC CAT GTT CTG GAG-3' 
minus:5'-CCC ATC ACC ATC TTC CAG-3' 
plus:5'-CAT CAC GCC ACA GTT TCC-3' 

2.4. Apo B mRNA editing assay 
2.4.1. RNA preparation. Following organ culture technique, ex- 

plants were washed extensively in ice-cold sterile saline, frozen in 
liquid nitrogen and stored at -80°C until processing for RNA extrac- 
tion. RNA was extracted with buffer-saturated phenol/chlorofl~rm 
(1:1), and precipitated at -20°C. To remove contaminating residual 
nuclear DNA, total RNA was treated with RNase-free DNase (Pro- 
mega) for 15 min at 37°C. 

2.4.2. eDNA synthesis. 500 1000 ng total RNA in 10 [al was de- 
natured for 5 min at 65°C and immediately chilled on ice. Following 
the addition of 10 [al of a mixture containing 0.5 mM dNTP (Phar- 
macia), 4 [aM 3'-apo B oligo (5' TTCAATGATATCAATAATA 3'), 
12.5 U AMV reverse transcriptase (Boehringer Mannheim) and 8 U 
RNase inhibitor, a buffer solution (10 mM Tris-HC1 pH 8.3, 1.5 mM 
MgC12 and 50 mM KC) was added. The reverse transcription was 
performed at 42°C for 2 h. 

2.4.3. PCR amplification. PCR amplification was carried out in 50 
111 containing 5 [al reverse transcribed reaction, 10 mM Tris-HC1, pH 
8.3, 1.5 mM MgCI2, 50 mM KC1, 200 [aM dNTP (Pharmacia), 1.6 [aM 
apo B oligo (5' GAGAAACTGACTGCTCTCAC 3'), 2 U Taq DNA 
polymerase, 30 cycles, each consisting of denaturation for 30 s at 
94°C, annealing for 90 s at 54°C and extension for 1 min at 72°C. 
An extension at 72°C for 10 min was added to complete the amplifi- 
cation. PCR product (204 bp) was extracted from agarose gel electro- 
phoresis, precipitated with ethanol and resuspended in 25 [al of sterile 
water. 

2.4.4. Primer extension. Primer extension was performed accord- 
ing to a modification of the technique ofWu et al. [16]. Briefly, 5 [al of 
purified PCR product was denatured at 95°C for 5 rain and kept on 
ice. To this sample was added a mixture (10 [al) containing 67 JaM apo 

B-ext (5' ATC ATA ACT ATC TTT AAT ATA CTG 3'), 0.33 mM 
of each dATP and dCTP (Pharmacia), 0.33 mM ddGTP, 33 ~tM 
dTTP, 15 [aCi [e~-a2P]TTP (NEN, Dupont), 12.5 U AMV reverse 
transcriptase (Boehringer Mannheim), 50 mM Tris pH 8.5, 8 mM 
MgC12, 30 mM KC1, 1 mM DTT. The reaction was carried out at 
42°C for 2 h. Two extension products (33 and 44 nucleotides for 
cDNA unedited and edited apo B mRNA, respectively) were fraction- 
ated on 15% PAGE (acrylamide/bisacrylamide, 19:1). The ratio of 
edited to unedited apo B mRNA was analyzed using a Phosphor- 
imager (Molecular Dynamics). The validation of the primer extension 
and optimization of apo B mRNA editing were verified by controlling 
the critical number of cycles, using serial dilutions of total RNA from 
post-confluent cells and employing known standard amounts of CAA 
and TAA containing products. 

2.5. Analyses 
Lipid and lipoprotein synthesis were also assessed with [14C]oleic 

acid as described previously [5,6]. The tissue homogenate was used for 
protein determinations according to Lowry et al. [17]. 

2.6. Statistical analysis 
Results are reported as means _+ S.E.M. The differences between 

means were assessed using the two-tailed Student's t-test. 

3. Results and discussion 

The mechanisms  involved in the regulat ion of  apol ipopro-  
teins have been studied extensively in the liver, since (1) this 
organ plays a central  role in l ipoprote in  synthesis and  secre- 
t ion as well as in l ipoprote in  degrada t ion  [4], and  (2) numer-  
ous hepatic  models  are available, including liver slices, per- 
fused livers, h e p a t o m a  cells and  pr imary  cultures of  
hepatocytes  [9 12,18]. Unl ike  the liver, the small intestine 
was evaluated to a lesser degree in similar functions,  p robab ly  
because of  the l imited n u m b e r  of  models.  Consider ing the 
wel l -known effects of  insulin on  prote in  and  lipid synthesis, 
it was of  interest  to investigate its potent ia l  role in modula t ing  
l ipoprotein and  apol ipopro te in  biogenesis in h u m a n  intestine. 
Thus,  the aim of  the current  s tudy was to determine the effect 
of  insulin on  the regulat ion of  lipids, l ipoproteins  and  apoli- 
poprote ins  B-100, B-48 and  A-I, using h u m a n  jejunal  explants  
cul tured in serum-free medium.  

The  incorpora t ion  of  [14C]oleic acid into med ium and  cel- 
lular total  lipids and  main  lipid classes was recorded over a 
per iod of  42 h. There  was a l inear  ou tpu t  of  neut ra l  lipids and  
phosphol ip ids  over this per iod (data  no t  shown). Total  lipid 
conten t  and  triglycerides, in part icular ,  were much  higher  in 
media  than  tissue, demons t ra t ing  active synthesis and  secre- 
t ion in cultures of  je junal  explants  (Fig. 1). Therefore,  the 
intest inal  o rgan  culture provides a useful in vitro model  for 
the invest igat ion of  l ipoprote in  processing in cont ras t  to the 
l imited secretion capacity of  Caco-2, a h u m a n  intest inal  
epithelial cell line, and  const i tutes  a powerful  tool  to study 
fat t r anspor t  mechanisms  [19]. The mos t  d ramat ic  effect of  
insulin was the reduct ion of  triglyceride and  chylomicron se- 
cretion,  conf i rming and  extending our  previous findings [8]. 
These observat ions  are in agreement  with the inhib i tory  effects 
of  this h o r m o n e  repor ted in cul tured rat  hepatocytes  [9-12]. 

The  next set of  experiments  was designed to examine the 
effect of  insulin on  the process of  apol ipopro te in  biogenesis. 
Thus,  the synthesis of  apol ipoprote ins  by je junal  explants  was 
es t imated by the incorpora t ion  of  [aSS]methionine. Fol lowing 
the incubat ion ,  the apol ipoprote ins  were immunoprec ip i ta ted ,  
separated by SDS-polyacrylamide gel electrophoresis,  identi- 
fied on  the basis of  e lectrophoret ic  mobil i ty  (compared  with 
coelect rophoresed nat ive h u m a n  p lasma apol ipoprote ins  as 



E. Levy et al./FEBS Letters 393 (1996) 253-258 255 

A. B. C. 
T I S S U E  M E D I U M  M E D I U M  

IOOOOO, 100000 100000- 

90000 ["-]CONTROL OO0001~ •INSULIN ] i •INSULIN []  CONTROL 90000 ! []  CONTROL 
¢ 8OOOO • INSULIN 80OOO J I J = 800ooi 

"i 7ooooi ~, l ~= 7ooooi 70OOO [_~ 
,,,:. 6ooooil B o,o 50ooo_ z 60oo0: 

~ 50000: -="=--=.; II I L.'=-- I II I I  t 
 llF! I 30000   = ooool I I 

'= 2ooooil I I  [ I I  r l l  I ~= 2ooo0 '=2ooooJ I L_ I 
1 0 O O 0 ~  10000 l o o o o ~ ~ _ _ ~  

0 0 0 
TOTALS PL TG CE TOTALS PL TG CE CM VLDL HDL 
LIPIDS LIPIDS 

Fig. l. Effect of insulin on lipid and lipoprotein secretion. After 42 h incubation with [14C]oleic acid in serum-free Leibovitz L-15, in the ab- 
sence and presence of insulin, the medium was recovered and chylomicrons, VLDL and HDL were separated by ultracentrifugation. Lipids 
were extracted, isolated by TLC and their radioactivity counted as described in Section 2. Results of tissue and medium lipids (A,B) as well as 
lipoproteins (C) are expressed as dpm/mg protein in this representative experiment. TG, triacylglycerol; PL, phospholipid; CE, cholesteryl es- 
ter. 

well as s ta ined molecular  weight s tandards)  and  then counted.  
Fig. 2 shows a representat ive  gel scan, which revealed tha t  the 
je junal  o rgan  cul ture  produced  apo A-I  as the p r edominan t  
apol ipoprote in .  In all experiments ,  apo B-48, of  lower molec- 
ular  weight,  was the ma jo r  apo B form. Incuba t ion  of  je junal  

explants  in the presence of  insulin results in a t rend of  in- 
creased [35S]methionine incorpora t ion  into newly synthesized 
apo B (Fig. 2B). However,  the addi t ion  of  insulin produced a 
significant decrease in the secretion of  apo  B-48 and  apo B- 
100 (Fig. 2C). On the o ther  hand,  insulin had  little effect on  
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Fig. 2. Profile of 35S-labeled apolipoproteins A-I and B synthesized by cultured jejunal explants. Following 42 h incubation with unlabeled oleic 
acid in the absence and presence of insulin, jejunal explants were incubated for 45 min with methionine-free medium containing unlabeled oleic 
acid and [35S]methionine with or without insulin. Apolipoproteins were immunoprecipitated and analyzed by SDS-PAGE. Data from a repre- 
sentative experiment are illustrated in A. Means + S.E.M. (of 10 experiments carried out in triplicates) for tissue and media (expressed as a per- 
cent to total [35S]methionine labeled protein/rag tissue protein) are presented in B and C, respectively. *Results are significantly different from 
the no insulin condition at p < 0.01. 
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Fig. 3. Effect of insulin on apoprotein transcript levels in jejunum explants from 16 19-week-old fetuses. Explants were incubated and mRNA 
determined as indicated in Section 2. (A) Representative effect of insulin on the expression of apolipoproteins. (B) Relative levels (means 
+ S.E.M.) of apolipoprotein mRNA measured in the jejunal explants of 7 individual fetuses (carried out in triplicates) by the technique de- 
scribed in Section 2. Data are expressed as average ratio values of control apo mRNA/control GAPDH mRNA and insulin apo mRNA/insulin 
GAPDH mRNA, GAPDH being the housekeeping gene. 

apo A-I synthesis in parallel with the unchanged production 
of HDL. These results suggest that the observed reduction in 
intestinal triglyceride and chylomicron output in vitro, subse- 
quent to insulin administration, may reflect a direct action of 
insulin on apo B secretion. In similar fashion, the addition of 
insulin to primary cultures of rat hepatocytes resulted in the 
failure of a substantial portion of newly synthesized apo B to 
be secreted [20]. 

In order to determine whether the reduction in apo B synthe- 
sis caused by insulin was related to decreases in intestinal apo B 
mRNA, RT-PCR analysis was performed. Interestingly, the 
representative autoradiogram of these gels illustrated in Fig. 
3, as well as the mean of 7 distinct experiments, indicates that 
insulin had no significant effect on the abundance of apo B 
mRNA. Under our experimental conditions, the relative apo 
13 mRNA levels in the presence of insulin were close to con- 
trol values. This suggests that in cultured jejunal explants, the 
expression of the apo B gene is constitutive and that co- or 
post-translational mechanisms may be responsible for the reg- 
ulation of apo B formation. The translational efficiency and 
stability of apo B mRNA may be involved. Intracellular deg- 
radation of apo B has been proposed as a regulatory event 
for VLDL secretion by the liver. Studies in rat hepatocytes 
indicated significant degradation of apo B mediated by insulin 
[21,22]. In agreement, little degradation was noted when in- 
sulin was absent under similar conditions [20]. However, ad- 
ditional investigation is still necessary to assess whether in- 
creased apo B degradation, in the presence of insulin, occurs 
in human intestinal explants. Some workers also stress the 
need to focus on the translational efficiency of apo B 
mRNA transcripts. For example, Adeli and Theriault [23] 
have observed a reduction in apo B synthesis in insulin-treated 

HepG2 lysates, due to a lower translational efficiency of apo B 
mRNA. 

Black and Ellinas [24] have also investigated the effects of 
insulin on apo B synthesis in jejunal explants from newborn 
piglets. No influence of insulin was recorded in these experi- 
ments, suggesting that the modulation of apo B synthesis by 
insulin may depend on both the stage of development and the 
species studied. Consequently, our results may not be directly 
applicable to mature intestinal function. 

Apolipoprotein B is required for the intracellular assembly 
and secretion of triglyceride-rich lipoproteins [20,25]. There 
are two translation products of the apo B gene: human apo 
B-100 is synthesized predominantly by the liver and human 
apo B-48 is produced by the intestine through the newly 
mRNA editing mechanism [13,14]. In our study, the profile 
of apo B mRNA editing was determined by the triplicate 
analysis of separate jejunal explants deriving from 7 fetuses. 
A representative autoradiograph of primer extension products 
isolated from editing reactions is shown in Fig. 4. By 17-20 
weeks of gestation, editing reached a level of 50% UAA. Sim- 
ilar proportions in the ratio of newly synthesized apo B-48 
and apo B-100 were obtained. In contrast, apo B mRNA 
editing was not detectable in triplicate analyses of RNA 
from HepG2 cells used as a negative control. In the human 
intestinal experimental model, we found that the proportion 
of edited apo B mRNA in insulin-treated culture was un- 
changed compared with that of controls. Therefore, insulin, 
unlike other metabolic and hormonal factors in rats, appar- 
ently had no detectable effect on apo B mRNA editing in 
humans. Thyroid hormone treatment in hypothyroid rats 
[26] and carbohydrate refeeding diet following fasting [27] 
modify the amount of hepatic apo B-48 mRNA. Apo B 
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Fig. 4. Apolipoprotein B mRNA editing detected by RNA primer 
extension analysis in human intestinal explants. The migration of 
non-edited (CAA) and edited (TAA) is shown. Caco-2 and Hep G2 
cells are used as positive and negative controls, respectively. (A) 
Representative result from 7 separate experiments. The ratio of 
B-48/B-100 and edited to unedited apo mRNA was determined 
using a Phosphorimager and is presented in B. 

m R N A  editing is a developmentally regulated process involv- 
ing apo B expression. In the postnatal rat, swine and human, 
the adult small intestine produces predominantly apo B-48 
because of  the activity of  this m R N A  editing, while editing 
activity is reduced earlier in gestation and increases dramati-  
cally to near adult levels, just  before parturit ion [28,29]. 

In our study, the synthesis of  apo A-I was not significantly 
altered in the presence of  insulin. In contrast,  Masumoto  et al. 
[30] reported that higher concentrations of  insulin inhibit apo 
A-I production in cultured rat hepatocytes, whereas Elshour- 
bagy et al. [31] observed a 2-fold increase in apo A-I m R N A  
in rat hepatocytes. These contradictory results, however, 
could be due to the use of  different models (intestine vs liver) 
and species (humans vs rats). 

It has been suggested that cholesteryl ester (CE), the other  
core lipid of  apo B-containing lipoproteins, is a critical reg- 
ulator of  apo B secretion [32]. In cultured jejunal explants, 
cholesteryl ester synthesis was limited and unaffected by in- 
sulin. It is likely, therefore, that CE is not  an important  de- 
terminant in TG-rich lipoprotein secretion, confirming the 
data of  Ginsberg 's  laboratory [33]. 

In summary, insulin caused a significant decrease in chylo- 
micron production,  concomitant  with a reduction in the secre- 
tion of  de novo apo B-100 and apo B-48 synthesis. There were 
no major  changes in H D L  lipids or apo A-I. The inhibition of  
apo B output  by insulin treatment was not due to altered 
m R N A  level. This may implicate possible co- or  post-transla- 
tional modification of  apo B, resulting in impaired chylomi- 
cron formation. The responsiveness of  jejunal explants to the 
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addition of  insulin provides further evidence for the utility of  
intestinal organ culture in studying the regulation of  human 
lipoprotein processing. 
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