21 research outputs found

    Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden

    Get PDF
    Recent genome-wide association studies (GWAS) have identified multiple risk loci for common obesity (FTO, MC4R, TMEM18, GNPDA2, SH2B1, KCTD15, MTCH2, NEGR1 and PCSK1). Here we extend those studies by examining associations with adiposity and type 2 diabetes in Swedish adults. The nine single nucleotide polymorphisms (SNPs) were genotyped in 3885 non-diabetic and 1038 diabetic individuals with available measures of height, weight and body mass index (BMI). Adipose mass and distribution were objectively assessed using dual-energy X-ray absorptiometry in a sub-group of non-diabetics (n = 2206). In models with adipose mass traits, BMI or obesity as outcomes, the most strongly associated SNP was FTO rs1121980 (P < 0.001). Five other SNPs (SH2B1 rs7498665, MTCH2 rs4752856, MC4R rs17782313, NEGR1 rs2815752 and GNPDA2 rs10938397) were significantly associated with obesity. To summarize the overall genetic burden, a weighted risk score comprising a subset of SNPs was constructed; those in the top quintile of the score were heavier (+2.6 kg) and had more total (+2.4 kg), gynoid (+191 g) and abdominal (+136 g) adipose tissue than those in the lowest quintile (all P < 0.001). The genetic burden score significantly increased diabetes risk, with those in the highest quintile (n = 193/594 cases/controls) being at 1.55-fold (95% CI 1.21–1.99; P < 0.0001) greater risk of type 2 diabetes than those in the lowest quintile (n = 130/655 cases/controls). In summary, we have statistically replicated six of the previously associated obese-risk loci and our results suggest that the weight-inducing effects of these variants are explained largely by increased adipose accumulation

    Gene x lifestyle interactions in type 2 diabetes mellitus and related traits

    No full text
      Background: Type 2 diabetes is thought to result from interactions between genetic and lifestyle factors, but few robust examples exist. The overarching aim of this thesis was to discover such interactions by studying cohorts of white youth and adults from northern Europe in which physical activity, genotypes, and diabetes-related traits or diabetes incidence had been ascertained.   Methods: The thesis includes four papers. In Paper I, we investigated associations and interactions between 35 common PPARGC1A polymorphisms and cardiovascular and metabolic disease traits in 2,101 Danish and Estonian children from the European Youth Heart Study (EYHS). Paper II used the same cohort to test associations and interactions on cardiometabolic traits for the diabetes-predisposing TCF7L2 polymorphism. In Paper III, we assessed associations for 17 type 2 diabetes gene polymorphisms on impaired glucose regulation (IGR) or incident type 2 diabetes, and tested whether these effects are modified by physical activity in a prospective cohort study of ~16,000 initially non-diabetic Swedish adults – the Malmö Preventive Project (MPP). Paper IV aimed to replicate main genetic effects and gene x physical activity interactions for an FTO polymorphism on obesity in 18,435 primarily non-diabetic Swedish (MPP) and Finnish (Prevalence, Prediction and Prevention of Diabetes in Botnia) adults. Results: In Paper I, nominally significant associations were observed for BMI (rs10018239, P=0.039), waist circumference (rs7656250, P=0.012; rs8192678 [Gly482Ser], P=0.015; rs3755863, P=0.02; rs10018239, P=0.043), systolic blood pressure (rs2970869, P=0.018) and fasting glucose concentrations (rs11724368, P=0.045). Stronger associations were observed for aerobic fitness (rs7656250, P=0.005; rs13117172, P=0.008) and fasting glucose concentrations (rs7657071, P=0.002). None remained significant after correcting for multiple statistical comparisons. We proceeded by testing for gene × physical activity interactions for the polymorphisms that showed statistical evidence of association (P&lt;0.05) in the main effect models, but none was statistically significant. In Paper II, the minor T allele at the rs7903146 variant was associated with higher glucose levels in older (beta=–0.098 mmol/l per minor allele copy, P=0.029) but not in younger children (beta=–0.001 mmol/l per minor allele copy, P=0.972). A significant inverse association between the minor allele at rs7903146 and height was evident in boys (beta=–1.073 cm per minor allele copy, P=0.001), but not in girls. The test of interaction between the TCF7L2 rs7903146 variant and physical activity on HOMA-B was nominally statistically significant (beta=0.022, Pinteraction=0.015), whereby physical activity reduced the effect of the risk allele on estimated beta-cell function. In Paper III, tests of gene x physical activity interactions on IGR-risk for three polymorphisms were nominally statistically significant: CDKN2A/B rs10811661 (Pinteraction=0.015); HNF1B rs4430796 (Pinteraction=0.026); PPARG rs1801282 (Pinteraction=0.04). Consistent interactions were observed for the CDKN2A/B (Pinteraction=0.013) and HNF1B (Pinteraction=0.0009) variants on 2 hr glucose concentrations. Where type 2 diabetes was the outcome, only one statistically significant interaction effect was observed and this was for the HNF1B rs4430796 variant (Pinteraction=0.0004). The interaction effects for HNF1B on 2 hr glucose and incident diabetes remained significant after correction for multiple testing (Pinteraction=0.015 and 0.0068, respectively). In Paper IV, the minor A allele at rs9939609 was associated with higher BMI (P&lt;0.0001). The tests of gene x physical activity interaction on BMI were not statistically significant in either cohort (Sweden: P=0.71, Finland: P=0.18). Conclusions: Variation at PPARGC1A is unlikely to have a major impact on cardiometabolic health in European children, but physical activity may modify the effect of the TFC7L2 variants on beta-cell function in this cohort. In Swedish adults, physical activity modifies the effects of common HNF1B and CDKN2A/B variants on risk of IGR and also modifies the effect of the HNF1B on type 2 diabetes risk. In Swedish and Finnish adults, we were unable to confirm previous reports of an interaction between FTO gene variation and physical activity on obesity predisposition

    New horizons for fundamental physics with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of GWs can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.Comment: Accepted in: Living Reviews in Relativit

    New horizons for fundamental physics with LISA

    No full text
    International audienceThe Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas
    corecore