81 research outputs found

    Tracing pollinator footprints on natural flowers.

    Get PDF
    Abstract Many insects are known to leave lipid footprints while walking on smooth surfaces. Presumably, the deposited substances improve tarsal adhesion. In bumblebees, footprint hydrocarbons also function as scent marks that allow detection and avoidance of recently depleted flowers. I used GC-MS to detect hydrocarbons deposited by bumblebee (Bombus pascuorum) on flowers of Lamium maculatum. In addition to the plants' own cuticular lipids, extracts of corollas that had been visited by bumblebees contained odd-numbered alkenes. The amount of pentacosenes (C 25 H 50 ) on corollas was linearly related to the number of bumblebee visits, with workers depositing approximately 16 ng per visit (extrapolated to a total of 65 ng of bumblebee cuticular hydrocarbons). Pentacosenes were retained on visited flowers without loss for 2 hr, and probably longer. This and results from flight cage experiments suggest that flower epicuticles retain a chemical record of pollinator visitation, including information on visiting bee species. Continuous footprint accumulation necessitates new explanations concerning the reversibility of Brepellent scent marks^of bumblebees

    Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).

    Get PDF
    BackgroundInsects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima.ResultsWe identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors).ConclusionsOur results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems

    Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations

    Get PDF
    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee

    Double-blind validation of alternative wild bee identification techniques: DNA metabarcoding and in vivo determination in the field

    Get PDF
    Over the past few decades, several investigations around the globe have reported alarming declines in the abundance and diversity of bee species. The success of effective conservation strategies targeting these important pollinators relies heavily on accurate biodiversity assessments. The shortage of taxonomic experts and the escalation of the ongoing biodiversity crisis call for the development of alternative identification tools to implement efficient monitoring programs. The validation of such techniques is crucial to ensure that they provide results comparable to those of traditional morphotaxonomy. Here we performed two double-blind experiments to evaluate the accuracy of a pair of new techniques used for wild bee identification: DNA metabarcoding and in vivo identification in the field. The methods were tested on sets of wild bees from Germany and their results compared against evaluations done by panels of bee experts using traditional morphotaxonomy. On average the congruency of species identification between metabarcoding and morphotaxonomy was 88.98% across samples (N = 10), while in vivo identification and morphotaxonomy were 91.81% congruent (N = 7) for bees considered feasible for in vivo identification in the field. Traditional morphotaxonomy showed similar congruencies when compared to itself: 93.65% in the metabarcoding study and 92.96% in the in vivo study. Overall, these results support both new methods as viable alternatives to traditional microscopy-based assessment, with neither method being error-free. Metabarcoding provides a suitable option to analyze large numbers of specimens in the absence of highly trained taxonomic experts, while in vivo identification is recommended for repeated long-term monitoring, and when working in areas where the sampling of individuals could threaten local populations of endangered wild bee species. Further research is still needed to explore the potential of both techniques for conservation management and wildlife monitoring, as well as to overcome their current limitations as taxonomic tools

    Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)

    Get PDF
    The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans

    Ökologie Stachelloser Bienen (Apidae, Meliponini) in Dipterocarpaceen-Wäldern im Tiefland von Sabah, Malaysia, mit einer Evaluierung des Einflusses der kommerziellen Holznutzung auf Populationen und Gemeinschaften

    No full text
    The present thesis reports on four years of field research on stingless bee ecology in Sabah, Malaysia. Hereby, it was the main focus to evaluate the effect of selective logging for timber extraction on communities of bees, and to elucidate causative relationships involved in regulating bee populations. Included were background studies on resource use (3.1, 3.2, 3.3) and nesting biology (3.4) as well as comparative studies on stingless bee diversity and abundance in logged and unlogged lowland rainforest sites (4.1, 4.2). Stingless bees proved to be generalist foragers that used a large range of plant species as pollen sources. Nevertheless, different species of bees had rather distinct pollen diets, a findind that was independent of fluctuations in flowering activity in the habitat. At one particular point in time colonies of one species (Trigona collina)collected mold spores (Rhizopus sp.) as a pollen surrogate. In order to obtain low-effort estimates of meliponine pollen sources a new method was developed: Trapping of bee garbage (with funnel traps) and the quantitative analysis of pollen in garbage samples. Pollen in bee garbage reflected pollen import with a certain time lag and could therefore be used for an assessment of long-term pollen foraging (see below). The majority of stingless bee nests (275 nests of 12 species) were found in cavities in trunks or under the bases of large, living canopy trees. Nest trees mostly belonged to commercial species and were of the correct size and (partly) timber quality to warrant harvesting. It was estimated that roughly one third of stingless bee nests in an given forest area would be killed during a selective logging operation. Besides causing direct mortality, logging may also indirectly affect bee populations by reducing the availability of potential nest sites (trees). However, in a comparison of primary and differentially logged forest sites (10 to 30 years after logging) no effect of the degree of disturbance on meliponine nest density was found. Instead, the variation in nest density (0 to 16.2 nest/ha) was best explained by differences in the available floral resources (assessed by analysis of pollen in bee garbage). Bee populations in forest edge situations were favored: there was a positive correlation between nest density and the proportion of external non-forest pollen (e.g. from crop plants, road edge vegetation, mangroves) in the bees’ diet. The highest nest density was found in a site bordering the mangroves in Sandakan Bay. Here, the mangrove tree Rhizophora apiculata represented a extraordinary large fraction of the pollen volume. Presumably, external pollen sources effectively supplement bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying-capacity. The idea of differential pollen limitation was strengthened by direct measurements of pollen import and foraging activity over a period of five months. Both were elevated in colonies in a site with high bee density. It is concluded that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Hereby, bee populations strongly benefit from edge effects and increased habitat diversity. Although direct negative effects of selective logging are strongly indicated by a close association of bee nests with commercial trees, no clear effects were detected in regenerating forests ten to 30 years after logging.Die vorliegende Dissertation umfaßt die Ergebnisse einer vierjährigen Studie zur Ökologie von Stachellosen Bienen in den Regenwäldern von Sabah, Malaysia. Hauptziel war es dabei, mögliche Auswirkungen der selektiven Holznutzung auf Bienengemeinschaften zu erforschen und, falls sich ein Effekt nachweisen läßt, die dafür verantwortlichen Wirkfaktoren zu identifizieren. Die Arbeiten schlossen sowohl Hintergrundstudien zur Nahrungsökologie (3.1, 3.2, 3.3) und Nistbiologie (3.4) ein, als auch vergleichende Erfassungen der Bienenabundanz und -diversität in primären und durch Holznutzung gestörten Tieflandregenwäldern (4.1, 4.2). Stachellose Bienen erwiesen sich als generalistische Blütenbesucher, die über die Zeit eine Vielzahl verschiedener Blütenpflanzen als Pollenquellen nutzen. Die Überlappung der Pollenspektren zwischen verschiedenen Bienenarten war jedoch sowohl bei geringer als bei höherer Blühaktivität relative niedrig. In einer Ausnahmesituation wurden von mehreren Kolonien einer Art (Trigona collina) auch Schimmelpilzsporen (Rhizopus sp.) als Pollenersatz eingetragen. Um die Pollennahrung von Meliponinen mit geringerem Aufwand und noch detaillierter erfassen zu können wurde eine neue Methode entwickelt: das automatisierte Absammeln von ‚Bienenmüll‘ (mittels Trichtefallen) und die quantitative Analyse der enthaltenen Pollenexinen. Die Polleninhalte des Mülls erwiesen sich dabei als verzögertes Abbild des eingetragenen Pollens und konnte daher für eine grobe Bestimmung langfristiger Nahrungsgewohnheiten herangezogen werden (siehe unten). Die große Mehrzahl der gefundenen Meliponinen-Nester (275 von 12 Arten) befanden sich entweder in Hohlräumen des Stämme oder unter der Stammbasis großer, lebender und oft kommerziell nutzbarer Kronenbäume. Grobe Berechnungen ergaben, daß mehr als ein Drittel aller Bienennester einer durchschnittlichen selektiven Fällaktion zum Opfer fallen würden. Neben diesem direkten Schaden könnte die kommerzielle Holznutzung auch indirekt (über eine Verringerung der zur Verfügung stehenden, potentiellen Nistbäume) die Bienenpopulationen negativ beeinflussen. Im Vergleich unterschiedlich stark eingeschlagener Flächen (10 bis 30 Jahre nach der letzen Nutzung) konnte allerdings kein Zusammenhang der Bienennestdichte mit dem Störungsgrad des Waldes gefunden werden. Statt dessen wurde die hohe Variation der Nestdichte (0 bis 16.2 Nester/ha) am besten durch die Unterschiede in den verfügbaren Nahrungsressourcen erklärt (bestimmt durch Müllpollenanalyse). Hier waren vor allem Waldflächen in Randlage begünstigt. Es bestand eine positive Korrelation der Nestdichte und dem Anteil externer, nicht aus dem Wald stammender Pollentypen (z. B. Kulturpflanzen, Straßenrandvegetation, Mangrovenpflanzen) an der Bienennahrung. Die bei weitem höchste Nestdichte wurden in einem an die Mangroven der Sandakan Bay angrenzenden Wald gefunden, wo ein herausragender Teil der Pollennahrung aus Pollen des Mangrovenbaums Rhizophora apiculata bestand. Vermutlich stellen externe Pollenquellen eine wichtige Ergänzung der Bienennahrung zu Zeiten geringer Blühaktivität im Wald dar, die die ‘carrying capacity’ des Waldes für Meliponinen erhöht. Die Theorie der unterschiedlichen Limitierung durch Pollenquellen wurde durch direkte Messungen von Polleneintrag und Fouragieraktivität überprüft: Beides war über fünf Monate hinweg bei Nestern in einer bienenreichen Fläche erhöht. Zusammenfassend läßt sich schließen, daß die Abundanz von Stachellosen Bienen in Sabahanischen Wäldern hauptsächlich von der lokalen Nahrungsverfügbarkeit abhängt und Bienenpopulationen hierbei stark von Randeffekten und erhöhter Habitatdiversität profitieren. Ein Einfluß von anthropogener Störung durch selektive Holznutzung ist aufgrund der Nistbiologie von Meliponinen kurz und mittelfristig zu erwarten, konnte aber in regenerierenden Wäldern zehn bis 30 Jahren nach dem Einschlag nicht eindeutig nachgewiesen werden

    Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests

    No full text
    corecore