740 research outputs found

    Future Polarised DIS Fixed Target Experiments

    Get PDF
    New experiments in polarised deep inelastic scattering will mainly concentrate on the measurement of semi-inclusive asymmetries. Especially, the upgraded HERMES experiment at DESY and the newly build COMPASS experiment at CERN will investigate the gluon polarisation via open charm and high p_T hadron pair production, study in detail the flavour decomposition of the quark helicity distributions and measure the tranversity distributions with tranversely polarised targets.Comment: 5 pages, 2 figures, LaTeX, Contribution to the proceedings of the DIS99, DESY-Zeuthen, Germany, April 199

    Florida Conditional Sales–Relief from Forfeiture

    Get PDF

    Structuring visual exploratory analysis of skill demand

    No full text
    The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on

    Newtonian versus relativistic nonlinear cosmology

    Full text link
    Both for the background world model and its linear perturbations Newtonian cosmology coincides with the zero-pressure limits of relativistic cosmology. However, such successes in Newtonian cosmology are not purely based on Newton's gravity, but are rather guided ones by previously known results in Einstein's theory. The action-at-a-distance nature of Newton's gravity requires further verification from Einstein's theory for its use in the large-scale nonlinear regimes. We study the domain of validity of the Newtonian cosmology by investigating weakly nonlinear regimes in relativistic cosmology assuming a zero-pressure and irrotational fluid. We show that, first, if we ignore the coupling with gravitational waves the Newtonian cosmology is exactly valid even to the second order in perturbation. Second, the pure relativistic correction terms start appearing from the third order. Third, the correction terms are independent of the horizon scale and are quite small in the large-scale near the horizon. These conclusions are based on our special (and proper) choice of variables and gauge conditions. In a complementary situation where the system is weakly relativistic but fully nonlinear (thus, far inside the horizon) we can employ the post-Newtonian approximation. We also show that in the large-scale structures the post-Newtonian effects are quite small. As a consequence, now we can rely on the Newtonian gravity in analyzing the evolution of nonlinear large-scale structures even near the horizon volume.Comment: 8 pages, no figur

    Searching for Leptoquarks in electron-photon Collisions

    Full text link
    We study the production of composite scalar leptoquarks in eγe\gamma colliders, and we show that an e+ee^+e^- machine operating in its eγe\gamma mode is the best way to look for these particles in e+ee^+e^- collisions, due to the hadronic content of the photon.Comment: 12 pages in REVTeX3. 6 figures appended as postcript files. Report: IFT-P.014/93 and IFUSP-P 104

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics

    Testing the Lorentz and CPT Symmetry with CMB polarizations and a non-relativistic Maxwell Theory

    Full text link
    We present a model for a system involving a photon gauge field and a scalar field at quantum criticality in the frame of a Lifthitz-type non-relativistic Maxwell theory. We will show this model gives rise to Lorentz and CPT violation which leads to a frequency-dependent rotation of polarization plane of radiations, and so leaves potential signals on the cosmic microwave background temperature and polarization anisotropies.Comment: 7 pages, 2 figures, accepted on JCAP, a few references adde

    Evolution of high-frequency gravitational waves in some cosmological models

    Get PDF
    We investigate Isaacson's high-frequency gravitational waves which propagate in some relevant cosmological models, in particular the FRW spacetimes. Their time evolution in Fourier space is explicitly obtained for various metric forms of (anti--)de Sitter universe. Behaviour of high-frequency waves in the anisotropic Kasner spacetime is also described.Comment: 14 pages, 8 figures, to appear in Czech. J. Phy

    NAHE-based string models with SU(4) X SU(2) X U(1) SO(10) Subgroup

    Get PDF
    The orbifold GUT doublet-triplet splitting mechanism was discussed in 1994 in the framework of the NAHE-based free fermionic models in which the SO(10) GUT symmetry is broken to SO(6) X SO(4), SU(3) X SU(2) X U(1)^2, or SU(3) X U(1) X SU(2)^2. In this paper we study NAHE-based free fermionic models in which the SO(10) symmetry is broken at the string level to SU(4) X SU(2) X U(1). In addition to the doublet-triplet splitting this case also has the advantage of inducing the doublet-doublet splitting already at the string level. We demonstrate, however, that NAHE-based models with SU(4) X SU(2) X U(1) SO(10) subgroup are not viable. We show that, similarly to the LRS models, and in contrast to the FSU5, PS and SLM models, the SU421 case gives rise to models without an anomalous U(1) symmetry, and discuss the different cases in terms of their N=4 origins.Comment: 25 pages. Standard Latex. Revised version to appear in NP
    corecore