129 research outputs found

    Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory

    Full text link
    We present the two-loop QCD helicity amplitudes for quark-gluon scattering, and for quark-antiquark annihilation into two gluons. These amplitudes are relevant for next-to-next-to-leading order corrections to (polarized) jet production at hadron colliders. We give the results in the `t Hooft-Veltman and four-dimensional helicity (FDH) variants of dimensional regularization. The transition rules for converting the amplitudes between the different variants are much more intricate than for the previously discussed case of gluon-gluon scattering. Summing our two-loop expressions over helicities and colors, and converting to conventional dimensional regularization, gives results in complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans. We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric Yang-Mills theory, obtained from the QCD amplitudes by modifying the color representation and multiplicities, and verify supersymmetry Ward identities in the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop assembly; remaining results unaffecte

    A LOW COST PHYSICS AND ENGINEERING TRAINING REACTOR. Reactor Design and Feasibility Study

    Full text link
    The conceptual design of a low cost training reactor for the instruction of physicists and engineers is covered. It is conceived as an instructional tool for a course such as that given at the Oak Ridge School of Reactor Technology. The reactor is of a modified pool type, and is designed for a maximum power level of one Mw. This arrangement will accommodate engineering experiments, shielding experiments, and critical experiments as well as being useful as a neutron and gamma source. (auth

    A Multilevel Product Model for Simulation-Based Design of Mechanical Systems

    Get PDF
    This paper presents a multilevel product model that supports Simulation-Based Design (SBD) of mechanical systems, from pre liminary to detailed design stages The pnmary goal of the SBD is to achieve product designs featuring better performance and greater du rability and reliability through computer-based modeling, engineering analysis, and design trade-off. A Computer-Aided Design (CAD) model combined with engineering parameters and mathematical equations that simulate physical behavior of the mechanical system constitute its product model for SBD. For preliminary design, improvement of system performance, including dynamics and human factors, is usually the primary focus A CAD model with reasonably accurate physical parameters, such as mass properties of major components or assemblies, is defined as the base definition of the product model for SBD. A number of simulation models are derived from the base definition to sup port simulation of the mechanical system performance A parametric study can be conducted to search for design alternatives using dimen sion parameters created in the parameterized CAD model. The CAD model and base definition are then refined from the preliminary design stage to support intermediate designs. Intermediate designs will primarily focus on product subsystem performance. A product model is evolved by refining geometric representation of mechanical components in CAD, and expanding product assembly into parts and sub assemblies for further engineering analysis Component designs for performance, such as fatigue, mechanical reliability, and structural per formance, as well as maintainability are the primary focus in the detailed design stage. A detailed product model evolved from that of the previous design is needed In the detailed design stage, a systematic design trade-off method supports design improvement. A High Mobil ity Multi-Purpose Wheeled Vehicle (HMMWV) is employed to illustrate and demonstrate the proposed product model.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Twist Four Longitudinal Structure Function in Light-Front QCD

    Get PDF
    To resolve various outstanding issues associated with the twist four longitudinal structure function FLτ=4(x){F_L^{\tau=4}(x)} we perform an analysis based on the BJL expansion for the forward virtual photon-hadron Compton scattering amplitude and equal (light-front) time current algebra. Using the Fock space expansion for states and operators, we evaluate the twist four longitudinal structure function for dressed quark and gluon targets in perturbation theory. With the help of a new sum rule which we have derived recently we show that the quadratic and logarithmic divergences generated in the bare theory are related to corresponding mass shifts in old-fashioned light-front perturbation theory. We present numerical results for the F2F_2 and FLF_L structure functions for the meson in two-dimensional QCD in the one pair approximation. We discuss the relevance of our results for the problem of the partitioning of hadron mass in QCD.Comment: 25 pages, 2 ps figures, accepted for publication in Physical Review

    Bloom-Gilman duality of inelastic structure functions in nucleon and nuclei

    Get PDF
    The Bloom-Gilman local duality of the inelastic structure function of the proton, the deuteron and light complex nuclei is investigated using available experimental data in the squared four-momentum transfer range from 0.3 to 5 (GeV/c)**2. The results of our analysis suggest that the onset of the Bloom-Gilman local duality is anticipated in complex nuclei with respect to the case of the protonand the deuteron. A possible interpretation of this result in terms of a rescaling effect is discussed with particular emphasis to the possibility of reproducing the damping of the nucleon-resonance transitions observed in recent electroproduction data off nuclei.Comment: revised version, to appear in Physical Review

    Global QCD Analysis and the CTEQ Parton Distributions

    Get PDF
    The CTEQ program for the determination of parton distributions through a global QCD analysis of data for various hard scattering processes is fully described. A new set of distributions, CTEQ3, incorporating several new types of data is reported and compared to the two previous sets of CTEQ distributions. Comparison with current data is discussed in some detail. The remaining uncertainties in the parton distributions and methods to further reduce them are assessed. Comparisons with the results of other global analyses are also presented.Comment: (Change in Latex style only: 2up style removed since many don't have it.) 35 pages, 23 figures separately submitted as uuencoded compressed ps-file; Michigan State Report # MSU-HEP/41024 and CTEQ 40

    Search for Colour Reconnection Effects in e+e- -> W+W- -> hadrons through Particle-Flow Studies at LEP

    Get PDF
    A search for colour reconnection effects in hadronic decays of W pairs is performed with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The analysis is based on the study of the particle flow between jets associated to the same W boson and between two different W bosons in qqqq events. The ratio of particle yields in the different interjet regions is found to be sensitive to colour reconnection effects implemented in some hadronisation models. The data are compared to different models with and without such effects. An extreme scenario of colour reconnection is ruled out

    Inclusive Jet Production in Two-Photon Collisions at LEP

    Get PDF
    Inclusive jet production, e+e- -> e+e- \ee$ jet X, is studied using 560/pb of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The inclusive differential cross section is measured using a k_t jet algorithm as a function of the jet transverse momentum, pt, in the range 3<pt<50 GeV for a pseudorapidity, eta, in the range -1<eta<1. This cross section is well represented by a power law. For high pt, the measured cross section is significantly higher than the NLO QCD predictions, as already observed for inclusive charged and neutral pion production

    A model for the Q2Q^2 dependence of polarized structure functions

    Get PDF
    We present an update of a phenomenological model for the spin dependent structure functions g1(x,Q2)g_1(x,Q^2) of the proton and neutron. This model is based on a broken SU(6) wavefunction parametrized by the unpolarized structure functions. The two free parameters of the model are choosen to fulfill the Bjorken and Ellis--Jaffe sum rules. The model respects isospin symmetry and has zero strange sea polarization. Using new values for F/DF/D from hyperon beta decay the resulting Q2Q^2 dependent asymmetries A1A_1 are in perfect agreement with the existing data. Therefore we do not see any evidence for a ``spin crisis''. With two choices for g2g_2 the Q2Q^2 dependence of A1(x,Q2)A_1(x,Q^2) and A2(x,Q2)Q2/MA_2(x,Q^2)\sqrt{Q^2}/M is predicted and shown to be small for both cases.Comment: 18 pages and 11 figures as uudecoded ps file
    corecore