1,693 research outputs found

    3D N = 1 SYM Chern-Simons theory on the Lattice

    Full text link
    We present a method to implement 3-dimensional N = 1 SUSY Yang-Mills theory (a theory with two real supercharges containing gauge fields and an adjoint Majorana fermion) on the lattice, including a way to implement the Chern-Simons term present in this theory. At nonzero Chern-Simons number our implementation suffers from a sign problem which will make the numerical effort grow exponentially with volume. We also show that the theory with vanishing Chern-Simons number is anomalous; its partition function identically vanishes.Comment: v2, minor changes: expanded discussion in section III c, typos corrected, 17 pages, 9 figure

    Lattice four-dimensional N=4 SYM is practical

    Full text link
    We show that nonperturbative lattice studies of four-dimensional N=4 Super-Yang-Mills are within reach. We use Ginsparg-Wilson fermions to avoid gluino masses and an exact implementation of the (chiral) RR-symmetry, which greatly limits the number of counterterms that must be fine-tuned. Only bosonic operators require fine tuning, so all tunings can be done ``offline'' by a Ferrenberg-Swendsen type reweighting. We show what measurables can be used to perform the tuning.Comment: 4 page

    Conjunction of factors triggering waves of seasonal influenza

    Get PDF
    Using several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population’s socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus’ antigenic drift over time; (4) the host population’€™s land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies

    Three Dimensional N=2 Supersymmetry on the Lattice

    Full text link
    We show how 3-dimensional, N=2 supersymmetric theories, including super QCD with matter fields, can be put on the lattice with existing techniques, in a way which will recover supersymmetry in the small lattice spacing limit. Residual supersymmetry breaking effects are suppressed in the small lattice spacing limit by at least one power of the lattice spacing a.Comment: 21 pages, 2 figures, typo corrected, reference adde

    An AgMIP Framework for Improved Agricultural Representation in Integrated Assessment Models

    Get PDF
    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications

    Biophysical and Economic Implications for Agriculture of +1.5 and +2.0C Global Warming Using AgMIP Coordinated Global and Regional Assessments

    Get PDF
    This study presents results of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Coordinated Global and Regional Assessments (CGRA) of +1.5 and +2.0 C global warming above pre-industrial conditions. This first CGRA application provides multi-discipline, multi-scale, and multi-model perspectives to elucidate major challenges for the agricultural sector caused by direct biophysical impacts of climate changes as well as ramifications of associated mitigation strategies. Agriculture in both target climate stabilizations is characterized by differential impacts across regions and farming systems, with tropical maize (Zea mays) experiencing the largest losses while soy (Glycine max) mostly benefits. The result is upward pressure on prices and area expansion for maize and wheat (Triticum), while soy prices and area decline (results for rice, Oryza sativa, are mixed). An example global mitigation strategy encouraging bioenergy expansion is more disruptive to land use and crop prices than the climate change impacts alone, even in the +2.0 C World which has a larger climate signal and lower mitigation requirement than the +1.5 C World. Coordinated assessments reveal that direct biophysical and economic impacts can be substantially larger for regional farming systems than global production changes. Regional farmers can buffer negative effects or take advantage of new opportunities via mitigation incentives and farm management technologies. Primary uncertainties in the CGRA framework include the extent of CO2 benefits for diverse agricultural systems in crop models, as simulations without CO2 benefits show widespread production losses that raise prices and expand agricultural are

    Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo-derived strain and reveals exceptional intra-specific genetic diversity

    Get PDF
    Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga strain, and contains 25 new potential genes. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average Wright’s fixation index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species. These findings present clear implications for vaccine development, further demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived strain, which will be critical in design of next generation vaccines. The DNA capture approach used provides a clear advantage in specificity over alternative T. parva DNA enrichment methods used previously, such as those that utilize schizont purification, is less labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite
    • …
    corecore