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Figure 1. Putative determinants of seasonal influenza onset in the continental US and Poisson mixed-effect regression analysis (Approach 2). Plate A

shows the significant variables along with their computed influence coefficients from the mixed-effect Poisson regression analysis (the best model

chosen from 126 different regression equations with different variable combinations). The statistically significant estimates of fixed effects are grouped

into several classes: climate variables, economic and demographic variables, auto-regression variables, variables related to travel, and those related to

antigenic diversity (see the last entry in Table 5 for the detailed regression equation used. The complete list of all models considered is given in Table

S-D7). The fixed-effect regression coefficients plotted in Plate A are shown on a logarithmic scale, meaning that the absolute magnitude of predictor-

specific effect is obtained by exponentiating the parameter value. A negative coefficient for a predictor variable suggests that the influenza rate falls as

this factor increases, while a positive coefficient predicts a growing rate of infection as the parameter value grows. The integrated influence of

Figure 1 continued on next page
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Figure 1 continued

individual predictors, under this model, is additive with respect to the county-specific rate of infection. For example, a coefficient of �0:6 for parameter

AVG_PRESS_mean tells us that the average atmospheric pressure has a negative association with the influenza rate. As the mean atmospheric pressure

for the county grows, the probability that the county would participate in an infection initiation wave falls. As expð�0:6Þ ¼ 0:54, the rate of infection

drops by 46% when atmospheric pressure increases by one unit of zero-centered and standard-deviation-normalized atmospheric pressure. Similarly, an

increase in the share of a white Hispanic population predicts an increase in influenza rate: A coefficient of 1.3 translates into a expð1:3Þ � 100%�

100% ¼ 267% rate increase, possibly, because of the higher social network connectivity associated with this segment of population. Plates B - I

enumerate the average spatial distribution of a few key significant factors considered in Poisson regression: (B) average temperature; (C) average

maximum specific humidity; (D) average wind velocity in miles per hour; (E) average solar flux; (F) logarithm of population density (people per square

mile); (G) total precipitation; (H) income, and; (I) percent of poor as deviations about the country average. Plates J-M show the strong dependence

between our estimated antigenic diversity (normalized, see Definition in text) corresponding to the HA, NA, M1, and M2 viral proteins, and the

cumulative fraction of the inoculated population (normalized between 0 and 1), where both sets of variables are geo-spatially and temporally stratified.

Pearson’s correlation tests shown in Plates J-M were performed under null hypothesis that there the two quantities (plotted along axes X and Y) are

statistically independent (H0 : � ¼ 0).
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Figure 1—figure supplement 1. Logical flow and cross-corroboration of conclusions. Plate A: Diverse data sets processed via multiple techniques to

reach convergent, and reinforcing, conclusions. Approach 1 (the Granger-causality analysis) shows that the epidemic tends to begin near water bodies,

and that short-range travel is more influential compared to air travel for propagation. Approach 2 (Poisson regression) identifies significant predictive

factors, suggesting that the epidemic begins near the southern shores of the US, and corroborates the result on short- vs. long-range travel. Approach

3 (county-matching) points to south eastern shores of the continental US as where the epidemic initiates, and identifies a validated subset of predictive

factors. Plate B shows that influenza prevalence as reported by Truven dataset positively correlates with CDC reports. Plate C illustrates that our

conclusions regarding a putatively causal influence between neighboring counties, inferred using different techniques (mixed-effect regression vs. non-

parametric Granger-causality), match up positively. Pearson’s correlation tests shown in Plates B and C are performed under null hypothesis that there

the two types of quantities (plotted along axes X and Y) are statistically independent (H0 : � ¼ 0).

DOI: https://doi.org/10.7554/eLife.30756.004
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Figure 1—figure supplement 2. Significant influencing variables obtained with mixed effect regression with different models as tabulated in Table 1

of main text (three more models with DIC larger than that of the best model shown in Figure 1 plate A).

DOI: https://doi.org/10.7554/eLife.30756.005
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Figure 1—figure supplement 3. Additional Cases: Significant influencing variables obtained with mixed effect

regression with different models as tabulated in Table 1 of main text (three more models with DIC larger than that

of the best model shown in Figure 1 plate A).

DOI: https://doi.org/10.7554/eLife.30756.006
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Figure 1—figure supplement 4. Violin plots for the coefficients inferred for variables that turn out to be

significant in the best model, computed considering the complete set of models we investigated. We note that

with the exception of the antigenic variation of the surface protein hemagglutinin (HA), and some derivatives of

maximum absolute humidity, significant mass of the individual violin plots fall either entirely on the positive or

entirely on the negative half-plane; implying that the significant factors rarely flip sign. Thus, while the coefficients

inferred change as we explore different models, the direction of influence remains mostly unchanged.

DOI: https://doi.org/10.7554/eLife.30756.007
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Figure 1—figure supplement 5. Spatial variation in the probability of patient visits corresponding to any ICD9-CM code (plate on left), and for

diagnoses corresponding to influenza-like diseases (plate on right).

DOI: https://doi.org/10.7554/eLife.30756.008
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Figure 1—figure supplement 6. Informativeness of model vs model complexity as related to the number of terms in the regression equation. As

expected, we yielded more informative models as we increased complexity.

DOI: https://doi.org/10.7554/eLife.30756.009
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Figure 2. Characteristics of seasonal influenza in the continental US An analysis of county-specific, weekly reports on the number of influenza cases for

a period of 471 weeks spanning January 2003 to December 2013 (Plates A-H) for recurrent patterns of disease propagation. In particular, the weeks

leading up to that in which an epidemic season peaks (determined by significant infection reports from the maximum number of counties for that

season) demonstrate an apparent flow of disease from south to north, which cannot be explained by population density alone (also see movie in

Supplement). Plate I illustrates the near-perfect time table for a seasonal epidemic. Plates J and K compare the county-specific initiation probabilities of

an influenza season, and the causality streamlines.

DOI: https://doi.org/10.7554/eLife.30756.010
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Figure 3. Computation of causality field, Approach 1 Plates A and B: Incidence data from neighboring counties in Alabama, US. Plates C and D:

Transformation to difference-series, i:e:, change in the number of reported cases between weeks. We imposed a binary quantization, with positive

changes mapping to ‘1,’ and negative changes mapping to ‘0.’ From a pair of such symbol streams, we computed the direction-specific coefficients of

Granger causality (see Supplement). For each county, we obtained a coefficient for each of its neighbors, which captured the degree of influence

flowing outward to its respective neighbors (Plate L). We computed the expected outgoing influence by considering these coefficients as

representative of the vector lengths from the centroid of the originating county to centroids of its neighbors. Viewed across the continental US, we then

observed the emergence of clearly discernible paths outlining the ‘causality field’ (Plate G). The long streamlines shown are highly significant, with the

probability of chance occurrence due to accidental alignment of component stitched vectors less than 10
�185; while each individual relationship has a

chance occurrence probability of ~ 6% (Plates E and F). Plate H: Spatially-averaged travel patterns (see text in Materials and methods) and the sink

distribution between expected travel patterns. These patterns (Plate H), along with the inferred causality field (Plate I), match up closely, with sinks

Figure 3 continued on next page
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Figure 3 continued

showing up largely in the Southern US, explaining the central role played there. In Plate H, the size of the blue circles indicate the percentage of

movement streamlines (computed by interpreting the locally averaged movement directions as a vector field) that sink to those locations. In Plate I, the

size of the red circles indicate the percentage of causality streamlines that sink to the indicated locations. We note that ~ 75% of the movement

streamlines sink in counties belonging to the Southern states, which matches up well with the sinks of the causality streamlines. In Plates J and K show

spatial analysis results for two different infections (HIV and E. coli, respectively) and which exhibit very different causality fields, negating the possibility

of boundary effects.

DOI: https://doi.org/10.7554/eLife.30756.015
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Figure 4. Comparing influence of short- and long-distance travel on infection propagation Plate A shows land connectivity visualized as a graph with

edges between neighboring counties. Plate B shows air connectivity as links between airports, with edge thickness proportional to traffic volume. Plate

C shows the delay in weeks for the propagation of Granger-causal influence between counties in which major airports are located, and Plate E shows

the distribution of the inferred causality coefficient between those same counties. Plates D and F show the delay and the causality coefficient

distribution respectively, which we computed by considering spatially neighboring counties. The results show that local connectivity is more important.

We reached a similar conclusion using mixed-effect Poisson regression, as shown in Plate G: The inferred coefficients for land connectivity are

significantly larger than those for air connectivity, tweet-based connectivity, or exponential diffusion from the top 30 largest airports. The coefficients

shown in Plate G are exponentiated, allowing us to visualize probability magnitudes (see ‘Model Definition’).

DOI: https://doi.org/10.7554/eLife.30756.016
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Figure 4—figure supplement 1. Our analysis of the Twitter movement matrix indicates that people most

frequently travel between neighboring counties, preferentially towards higher-population-density areas, which

shows that the maximum-probability movement patterns follow the local gradient of increasing population density.

DOI: https://doi.org/10.7554/eLife.30756.017
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Figure 5. Prediction performance with training data from the first six seasons and validation on the last three. Plate A shows the correlation between

the observed incidence and the model-predicted response. We show significant positive correlation, particularly within the trigger periods, between the

model predictions and the actual held-out data. This gives us confidence to construct ROC curves for each week. Plates B-D show the ROC curves for

the last three weeks of each of the three seasons in the out-of-sample period (potentially, these computations can be repeated for all possible

partitions of study weeks into training and test samples). Plates E-G illustrate that the normalized decision variable, which is the normalized response

from the model, identifies the South and Southeastern counties as the trigger zones.

DOI: https://doi.org/10.7554/eLife.30756.018
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Figure 6. Results for our analysis involving county-matching (Approach 3). Plate A illustrates the factor combinations that turn out to be significant over

the nine seasons. Notably, for each season, we have multiple, distinct factor sets that turn out to be significant (p<0:05) and yield a greater-than-unity

odd ratio. Plotting the probability with which different factors are selected when we look at season-specific county matchings (the top panel in Plate A),

we see a corroboration of the conclusions drawn in Approach 2. We find that specific humidity and average temperature, along with their variations, are

almost always included. We do see some new factors that fail to be significant in the regression analysis, e:g:, degree of urbanity and vaccination

coverage. While vaccination coverage is indeed included as a factor in our best performing model, in Approach two it failed to achieve significance,

perhaps due to its strong dependence on antigenic variation (see Figure 1J–M). Degree of urbanity is indeed significant for some of the regression

models we considered (see Supplementary Information), but was not significant for the model with the smallest DIC. Note that ‘Treatment’ here is

defined as a logical combination of weather factors. A treatment is typically a conjunction of several weather variables. For example, the treatment

shown in top left panel of Plate B involves a conjunction of: (1) a drop in average temperature during the week of infection; (2) a drop in temperature

during the week of infection; (3) a higher-than-average specific humidity; (4) a higher-than-average temperature, and; (5) a high degree of urbanity. With

respect to the ‘treatment,’ we can divide counties into three groups: (1) ‘treated counties,’ shown in green; (2) at least one matching county for each of

the treated counties (matching counties are very close to the treated counties in all aspects but in treatment, which we called ‘control’ counties), shown

in black, and; (3) other counties, shown in grey. The counties in the ‘treatment’ and ‘control’ groups are further subdivided into those counties that

initiated an influenza wave and those that have not, resulting in four counts arranged into a two-by-two contingency table. We then used the Fisher

exact test to test for association between treatment and influenza onset. Panels in Plate B show both the treated and control sets for the 9 seasons for a

subset of chosen factors. The results are significant, as shown in Tables 2 and 3. The variable definitions are given in Table 4. Notably, some of the

variables found significant in the regression analysis are not included above, and some which are not found to be significant in the best regression

model show up here. This is not to imply that they are not predictive or lack causal influence. The matched treatment approach, as described above, is

not very effective if we use more than ~ 10� 15 factors simultaneously to define the treated set (for the amount of data we have); this results in a

contingency table populated with zero entries.

DOI: https://doi.org/10.7554/eLife.30756.019
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Appendix 1—figure 1. Intuitive Description of Self and Cross Models. Plate A illustrates the notion of self-models. Historical data is first represented

as a symbol sequence (denoted as ‘Data stream’ in Plate A) using space-time discretization and magnitude quantization. For example, we may use a

spatial discretization of �3
� in both latitudes and longitudes, a temporal discretization of 1 week, and a binary magnitude quantization that maps all

magnitudes below 4:0 to symbol 0, and all higher magnitudes to symbol 1. This symbol stream then represents a sample path from a hidden, quantized

stochastic process. A self-model is a generative model of this data stream, which captures symbol patterns that causally determine (in a probabilistic

sense) future symbols. Specifically, our inferred self-model (see Plate A(i) for an example) is a probabilistic, finite state automata (PFSA). Plate B

illustrates the notion of cross-models. Instead of inferring a model from a given stream to predict future symbols in the same stream, we now have two

symbol streams (Data Stream I and Data Stream II), and the cross-model is essentially a generative model that attempts to predict symbols in one

stream by reading historical data in another. Notably, as shown in Plate B(i), the cross-model is syntactically not exactly a PFSA (arcs have no

probabilities in the cross-model, but each state has an output distribution). We call such models ”crossed probabilistic finite state automata,’ or XPFSA.

Once these models are inferred, they may be used to predict the future evolution of the data streams. Thus, the self-model in Plate A may be initialized

with its unique stationary distribution, after which a relatively short observed history would dictate the current distribution on the model states. This, in

turn, would yield a distribution over the symbol alphabet in the next time step. For a cross-model, we would be able to obtain future symbol

distribution in the second stream, given a short history in the first stream. Note that the cross-model from I! II is not necessarily the same as the cross-

model in the other direction.

DOI: https://doi.org/10.7554/eLife.30756.033
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