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Abstract

Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle.

A live vaccine against the parasite is effective against challenge from cattle-transmissible T.

parva but not against genotypes originating from the African Cape buffalo, a major wildlife

reservoir, prompting the need to characterize genome-wide variation within and between

cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based tar-

get enrichment approach that enables, for the first time, de novo assembly of nearly com-

plete T. parva genomes derived from infected host cell lines. This approach has

exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-

derived T. parva parasites. De novo genome assemblies generated for cattle genotypes dif-

fer from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the

8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva

genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga

strain, and contains 25 new potential genes. The average non-synonymous nucleotide

diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%.

This remarkably high level of genetic divergence is supported by an average Wright’s fixa-

tion index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between

cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than

within, species. These findings present clear implications for vaccine development, further

demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived

strain, which will be critical in design of next generation vaccines. The DNA capture

approach used provides a clear advantage in specificity over alternative T. parva DNA
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enrichment methods used previously, such as those that utilize schizont purification, is less

labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite.

Author summary

An estimated 50 million cattle in sub-Saharan Africa are at risk of the deadly livestock dis-

ease East coast fever (ECF), caused by the parasite Theileria parva, which imposes tremen-

dous economic hardship on smallholder farmers. An existing ECF vaccine protects

against strains circulating among cattle, but not against T. parva derived from African

Cape buffalo, its main wildlife carrier. Understanding this difference in protective efficacy

requires characterization of the genetic diversity in T. parva strains associated with each

mammalian host, a goal that has been hindered by the proliferation of T. parva in nucle-

ated host cells, with much larger genomes. Here we adapted a sequence capture approach

to target the whole parasite genome, enabling enrichment of parasite DNA over that of

the host. Choices in protocol development resulted in nearly 100% parasite genome speci-

ficity and sensitivity, making this approach the most successful yet to generate T. parva
genome sequence data in a high-throughput manner. The analyses uncovered a degree of

genetic differentiation between cattle- and buffalo-derived genotypes that is akin to levels

more commonly seen between species. This approach, which will enable an in-depth T.

parva population genomics study from cattle and buffalo in the endemic regions, can eas-

ily be adapted to other intracellular pathogens.

Introduction

In developing countries, infectious diseases of livestock can have a broad and profound nega-

tive effect on public health, including malnutrition, increased susceptibility to disease, female

illiteracy and loss of productivity [1–3], and curb the potential for economic improvement [4].

Theileria parva is a tick-transmitted, obligate intracellular apicomplexan parasite that causes

East Coast fever (ECF), an acute fatal disease of cattle in eastern, central and southern Africa.

During proliferation of T. parva in the mammalian host, a multi-nucleated schizont immortal-

izes infected host lymphocytes and divides in synchrony with them, ensuring that the infection

is transmitted to each daughter cell, through poorly understood mechanisms [5–9]. Susceptible

animals usually die within three to four weeks post-infection. This is a result of widespread

lysis of infected and uninfected lymphocytes in the lymphoid tissues, secondarily inducing a

severe macrophage response, characterized by high IL-17 expression, and pulmonary edema

[10]. ECF represents a severe economic constraint and is a major impediment to the develop-

ment of the cattle industry in the impacted region. The most recent estimate, dating from the

1990’s, placed the losses from ECF at a million cattle each year; currently, an estimated 50 mil-

lion cattle are at risk and annual losses are estimated in $596 million [11–14].

An infection-and-treatment method (a.k.a ITM) involving administration of a lethal dose

of a cryopreserved stabilate of T. parva sporozoites from three parasite isolates, together with a

long-acting formulation of oxytetracycline, has been in use for several decades. Incorporation

of the three parasite isolates (known as the Muguga cocktail) is required to avoid vaccine eva-

sion, a common problem of anti-parasitic vaccines [15–17]. This vaccination method can pro-

tect against ECF for at least 43 months, although, in a variable percentage of animals,

heterologous parasites may induce transient clinical symptoms in vaccinated cattle [18].
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However, ITM also has significant drawbacks, including a logistically intensive manufacturing

process [reviewed in 19]. Also, there have been recently verified concerns that ITM is not

always as effective against challenge from buffalo-derived T. parva as it is against cattle-derived

parasites [20], and even cattle-derived T. parva from geographically diverse regions could

sometimes break through immunity induced by the Muguga cocktail vaccine [21]. The African

buffalo (Syncerus caffer) is an asymptomatic wildlife carrier of T. parva in the region and is the

primary mammalian host [22]. Areas where buffalo and cattle co-graze enable transmission of

the parasite between mammalian hosts by the tick vector, Rhipicephalus appendiculatus [23].

Studies using a limited set of markers strongly suggest that the T. parva strains (or geno-

types) circulating in the affected cattle population represent only a subset of a much more het-

erogeneous T. parva meta-population residing in buffalo [24–27], due primarily to lack of tick

transmissibility of buffalo-derived infections, associated with very low piroplasm counts. T.

parva isolates obtained from buffalo were at one time classified into a separate subspecies, T.

parva lawrencei, based on clinical presentation, despite the lack of genetic evidence to support

this claim [13]. Preliminary data suggests that genome-wide differences between the reference

Muguga strain and buffalo-derived isolates are substantially larger than among cattle-trans-

missible genotypes [28], although there is currently no genome assembly for T. parva from

buffalo. The design of a vaccine that is effective against most cattle- and buffalo-derived T.

parva requires the comprehensive characterization of genetic differences within and between

those two T. parva parasite populations, particularly in regions of the genome that encode anti-

genic proteins. Comprehensive knowledge of genetic variation in the species is also needed to

monitor the impact of live vaccination on the composition of parasite field populations.

The biology of T. parva has so far proved a powerful obstacle to the acquisition of DNA in

sufficient quantity and quality for whole genome sequencing. DNA extracted from cattle

blood early in the infection cycle is heavily contaminated with host DNA. In late stages of

infection, the tick-infective piroplasm stage infects erythrocytes, and requires collection of

large volumes of blood from clinically ill T. parva-infected animals to obtain purified piro-

plasm DNA in sufficient quantity for genome sequencing [29], an approach not sustainable or

ethically feasible for a large number of strains. In addition, and despite their higher virulence

to cattle, T. parva of buffalo origin induce lower levels of schizont parasitosis, and produce no

or very few piroplasms in cattle [30], precluding their use as a source of parasite DNA. T.

parva DNA can also be obtained from schizonts purified following lysis of infected lympho-

blasts [31, 32] but low yield, host DNA contamination, and the heterogeneity in lysing proper-

ties of infected cells make this approach unsuitable for high-throughput applications.

Finally, the estimation of genome-wide population genetic diversity relies on the identifica-

tion of sequence variants from the alignment of whole genome sequence data to a reference

genome [33]. The same approach has been used to identify pathogen-encoded antigens, which

are potential vaccine candidates, since they are often among the most variable protein-coding

genes in a genome [34]. However, in highly polymorphic species such as T. parva, this

approach is unreliable because sequence reads fail to map between strains, particularly in the

genomic regions that encode the most variable antigens [28, 35].

Here, we applied a target DNA sequence capture approach to selectively enrich parasite

DNA in samples obtained from T. parva-infected bovine lymphocyte cultures, consisting

mostly of bovine DNA [36]. Even though conceptually similar to pathogen DNA enrichment

approaches used before for other organisms [37–40], design choices in the current study

resulted in extremely high capture sensitivity and specificity. Furthermore, to gain access to

variable genomic regions that cannot be analyzed through read mapping approaches [35], we

assembled the captured sequence read data and analyzed the resulting de novo genome assem-

blies for completeness. Starting from cell cultures in which the parasite DNA was less than 4%
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[36], we have generated de novo genome assemblies for each isolate consisting of 109–126 scaf-

folds, that encompass >95% of the reference genome of T. parva. This approach was successful

even when applied to a highly divergent T. parva isolate from buffalo, for which we present the

first publicly available genome assembly. The ability to characterize genome-wide polymor-

phism based on whole genome assemblies, which provide higher resolution relative to read

mapping approaches, particularly in highly variable regions of the genome, represents a pow-

erful approach for the characterization of genetic variation in intracellular parasites such as

Theileria, and in particular for the study of highly polymorphic antigens and other variable

genes and regions of the genome.

Methods

Ethics statement

The Institutional Animal Care and Use Committee (IACUC) of the International Livestock

Research Institute (ILRI) was established in 1993 to ensure that international standards for

animal care and use are followed in all ILRI research involving use of animals. The original

studies in which cattle were infected, over two decades ago, were specifically approved by

ILRI’s IACUC. The expansion of the infected lymphocyte cultures, conducted to generate the

material used in this study, does not necessitate explicit IACUC approval.

Samples and parasite-host ratio

Four T. parva isolates were used; they were described originally in Morzaria et al. (1995), and

have been maintained in culture at the International Livestock Research Institute for over two

decades. These schizont-infected bovine lymphocyte cultures were derived from lymph node

biopsies taken from cattle experimentally infected with T. parva sporozoite stabilates BV115,

Marikebuni_3292, Uganda_3645 and Buffalo_7014_3081 (S1 Fig). Stabilate BV115 was estab-

lished in 2000, the result of a series of stabilates originally derived from the Muguga isolate,

obtained circa 1960 when field ticks were fed on cattle at the National Veterinary Research

Center (NVRC; now the Veterinary Research Institute), in Muguga, Kenya. BV115 is a cloned

stabilate. The Uganda and Marikebuni stabilates were also clonal, either cloned themselves or

derived from cloned stabilates (Morzaria et al. 1995), whereas the Buffalo_7014 stabilate was

not cloned and therefore could contain multiple parasite genotypes (S1 Fig). Bovine lympho-

cytes infected with the schizont stage of each isolate were propagated using established proto-

cols [41]. DNA was extracted from schizont-infected lymphocyte cell line cultures using

standard protocols [42], including lysis with SDS and proteinase K digestion, followed by phe-

nol/chloroform extraction and ethanol precipitation. The ratio of parasite to host DNA was

estimated for each sample, using a qPCR-based approach to estimate the absolute DNA

amount separately for bovine and T. parva DNA [36].

Genomic library construction

Library preparation was initiated using 900–1200 ng of total DNA, generated from the extrac-

tion of total DNA from infected lymphocyte cultures (S2 Table). Paired-end (PE) genomic

DNA libraries were constructed for sequencing on Illumina platforms using the NEBNext

DNA Sample Prep Master Mix Set 1 (New England Biolabs, Ipswich, MA). First, DNA was

sheared with the Covaris E210, to fragments targeted to 500–700 bp in length. Then libraries

were prepared using a modified version of manufacturer’s protocol. The DNA was purified

between enzymatic reactions and the size selection of the library was performed with AMPure

XT beads (Beckman Coulter Genomics, Danvers, MA).
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Whole-genome DNA sequence capture

A custom-designed Nimblegen SeqCap EZ oligo library was used to target capture the T.

parva genomic DNA in each genomic library for high-throughput sequencing using the 454

GS FLX and Illumina HiSeq2000 and MiSeq platforms. The capture method utilizes custom-

designed, biotinylated oligonucleotides for hybridization to the target sequence. The custom

oligo library used here was designed based on the T. parva Muguga reference genome

sequence with accession number AAGK01000000. The probes are proprietary which did not

allow quantification of capture efficiency given the number of mismatches to the probe. How-

ever, according to Roche, while the efficiency of pulldown depends on sequence context, sec-

ondary structure, %GC, and the position of the mismatches/indels within the sequence, the

method is robust to at least 10% sequence divergence between probe and target sequences and

as little as a 30 consecutive nucleotide match may pull down a fragment. Following hybridiza-

tion of library fragments to the oligo baits, streptavidin-coated magnetic beads are used to cap-

ture the bound fragments, and unbound fragments are washed away leaving captured library

fragments ready for sequencing.

Sequencing

The BV115 Illumina PE library was sequenced using the 100 bp paired-end protocol on an

Illumina HiSeq2000 sequencer, using approximately 7.25% of a flowcell lane. The libraries for

the remaining three isolates were sequenced on a MiSeq platform, using the 250 bp paired-end

protocol, multiplexed into a single run, with each using roughly 1/3 of the sequencing capacity.

Raw data from the sequencers was processed using Illumina’s RTA and CASAVA pipeline

software, which includes image analysis, base calling, sequence quality scoring, and index

demultiplexing. Data was then processed through both FastQC (http://www.bioinformatics.

bbsrc.ac.uk/projects/fastqc/) and in-house pipelines for sequence assessment and quality con-

trol. These pipelines report numerous quality metrics and perform a megablast-based contam-

ination screen. By default, our quality control pipeline assesses base call quality and truncates

reads where the median Phred-like quality score falls below Q20.

Read mapping and genome assembly

The Illumina sequence data were aligned to the reference genome (accession number

AAGK01000000) using the Bowtie 2 aligner [43]. Statistics for depth of coverage (number of

reads mapped per position) and reference genome breadth of coverage (fraction of the refer-

ence genome to which reads map) were generated using internal protocols. Gene coverage was

calculated using genomecov from the bedtools suite of tools [44]. The Illumina data were

assembled using the SPAdes Assembler v3.9.0 [45]. Because of coverage limitations inherent to

the assembler software, and to avoid overrepresentation of sequencing errors and introduction

of erroneous duplications, the high-coverage Illumina data was randomly sub-sampled to

depths of coverage ranging between 10X and 200X of the reference genome assembly in 10X

and 25X increments. The optimal assembly in each case was selected using a combination of

statistics including total contig count, contig N50 (contig length for which the set of all contigs

of that length or longer contains at least half of the assembly), maximum contig length and

total assembly length. The optimal assembly for the BV115 and Uganda assemblies had read

coverage cutoff values of 25X, and the optimal Marikebuni and Buffalo_3081 assemblies had

read coverage cutoff values of 10X. Assembly contigs were evaluated for host contamination

and any contigs matching to the host were removed. In-house scripts were used to determine

the extent of overlap between new assemblies and the reference genome (reference genome

breadth of coverage) and to generate statistics regarding genes present or absent from the new
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assemblies. Assembly correction was done using Pilon (v1.22) [46], using default parameters,

with the respective Illumina sequencing reads for each strain. Assembly gene coverage for each

strain was calculated using in-house scripts (https://github.com/jorvis/biocode/blob/master/

general/calculate_gene_coverage_from_assembly.py).

Single nucleotide polymorphism (SNP) and structural variant detection

and characterization

The Bowtie 2 alignments were converted to a BAM file using SAMtools [47]. The Genome

Analysis Toolkit (GATK) [48] was used to identify and correct misalignments caused by small

indels, and then to call both SNPs and indels. The resulting VCF file was used to call the major

allele (https://github.com/igs-jcsilva-lab/variant-calling-pipelines/blob/master/scripts_for_

driver/calling_majorallele.pl), and was then filtered with stringent criteria to eliminate poten-

tially false SNPs, requiring depth greater than 12, quality greater than 50, phred-scaled p-value

using Fisher’s Exact Test less than 14.5, and Root Mean Square mapping quality zero less than

2. The SNPs were classified by location into intergenic, intronic, synonymous, non-synony-

mous, read-through or non-sense using VCFannotator (vcfannotator.sourceforge.net). SNPs

were detected in assemblies using the show-snps option of the MUMmer3 (v3.23) [49]. The

updated T. parva Muguga genome annotation [50] was transferred on to the new assemblies

using the Genomic Mapping and Alignment Program (GMAP) v2014-04-06 [51]. Assembly-

tics was used to identify structural variants between the de novo assemblies and the reference

genome or corresponding assemblies generated from 454 sequencing [52].

Nucleotide diversity estimation and genetic differentiation between

populations

Nucleotide diversity (the average number of nucleotide differences per site, π), was calculated

based on SNPs called from read mapping and from assembly comparison. Nucleotide diversity

from read mapping was done using the VCFtools v0.1.14 package with the—site-pi option

[53]. This approach requires reads to map across isolates and does not correct for multiple

hits. Nucleotide diversity from de novo assemblies was estimated for the CDS alignment for

each gene, using the Nei-Gojobori method, which corrects for multiple hits [54]. In our study,

this approach requires that the locus be present in the de novo assemblies.

Genetic differentiation between cattle- and buffalo-derived T. parva populations was esti-

mated with Wright’s fixation index, FST [55], as implemented by Weir and Cockerham [56]),

using VCFtools v0.1.14 [53]. FST measures the proportion of genetic variation explained by

population differentiation, and varies between 0, for panmictic population, to 1, in fully differ-

entiated populations.

Gene prediction

To identify novel genes in contigs and genomic segments with no gene annotations we used

the gene prediction software Genemark-ES [57], which according to our experience is the

most accurate ab initio gene prediction software for T. parva [50]. To ensure that these contigs

are truly part of the T. parva genome, we considered only predicted genes that were contained

within contigs encoding homologs to T. parva genes. To identify true genes, we used BLASTN

to search each predicted gene model against NCBI’s non-redundant nucleotide database [58],

selecting only those with E-value less than 1x10-5. Genes matching to multigene family mem-

bers were removed from consideration as novel genes. Prediction of transmembrane helices in

proteins was done using TMHMM2.0 [59]. Prediction of GPI-anchor sites was done using
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PredGPI [60]. The presence and location of signal peptide cleavage sites in amino acid

sequences was predicted using SignalP 4.1 [61].

Results

Design of the whole-genome sequence capture approach: Length and

genome coverage of the probe set, and genomic library fragment size

We have customized a DNA sequence capture approach to obtain T. parva genomic DNA

from T. parva-infected bovine lymphocyte cell lines. The premise is similar to that of exome

capture [62, 63] in that the target DNA is only a small subset of the total DNA mix, but here

the DNA fraction intended for capture is the 8.31 Mb-long T. parva nuclear genome and the

39 kb-long apicoplast genome, while the non-target DNA is the>300 times larger animal host

genome. The capture probe set almost completely spans the nuclear and apicoplast genomes of

the reference T. parva Muguga [29], and are based on the SeqCap EZ platform (Roche/Nim-

blegen). The probe design was conducted by Roche/Nimblegen using proprietary software. As

part of the probe design, probe length was minimized, to increase the success of cross-strain

DNA capture of loci with highly diverged segments by taking advantage of relatively small,

conserved DNA segments that are intermixed with more rapidly evolving regions; the result-

ing probes average 76 bp in length. Probes that mapped to low complexity sequences or>5

genomic regions were eliminated, as were those with strong sequence similarity to the bovine

genome. The final probe set consists of a series of overlapping probes, which cover 7,932,549

bp (95.5%) of the combined length of the nuclear genome (8,308,027 bp) and the apicoplast

genome (39,579 bp). The fraction of the two genomes not covered by probes is spread among

3,843 independent genomic regions that average 93 bp in length (Fig 1, S1 Table). In total, 53

genes have no probe coverage, while 4,111 genes have at least some coverage by the probe set,

with>50% of all genes being completely covered by probes (S1 Table). The 53 genes without

probe coverage are all members of multigene families, including Theileria parva repeat (Tpr)
and Subtelomere-encoded Variable Secreted Protein (SVSP). To maximize the probability of

capturing both genes that are highly variable across strains and genomic regions without

probe coverage, we sheared the genomic DNA sample to a fragment size significantly larger

Fig 1. Gaps in coverage of reference genome for capture probes, reads and assemblies. Violin plots of length

distribution of gaps in coverage of T. parva reference genome by capture probes (n = 3,843), as well as for sequence

data generated for BV115 (Muguga) and Buffalo_3081 (buffalo-derived) T. parva isolates. For each isolate, gaps in

coverage were identified after mapping of sequence reads (Read mapping) and after alignment of de novo assemblies

(Assembly alignment) to the reference T. parva genome. For BV115, gaps in coverage after read mapping (n = 42) were

fewer than observed for Buffalo_3081 (n = 735). The number of gaps after alignment of assembly contigs to the

reference genome were similar in BV115 (n = 73) and Buffalo_3081 (n = 68). The Buffalo_3081 sample represents the

isolate least similar to the reference and, therefore, to the probes. For the Buffalo_3081 isolate, and in contrast with

BV115, assembly alignment resulted in fewer and smaller gaps than read mapping. The median is shown by the light

gray circle, and the interquartile range is shown with the dark gray rectangle.

https://doi.org/10.1371/journal.pntd.0008781.g001
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than the length of the probes, such that captured DNA fragments contain both conserved seg-

ments that hybridize to the probes and highly variable regions that flank them.

Data generation

Four T. parva isolates were used in this study, which were described in earlier studies [36, 64].

Briefly, cell line BV115 consists of infected lymphocytes resulting from the experimental infec-

tion of Bos taurus animal BV115 with a clone of the original Muguga reference stock (S1 Fig).

This parasite, obtained from the Kenyan highlands, is the source of the reference T. parva
genome [29], and was also the template for the design of the capture probes. Therefore, enrich-

ment results using the BV115 isolate represent both a proof of principle for this approach and

positive control, representing the best possible scenario of a perfect sequence match between

probes and the DNA they target. Two other clones derived from cattle infections were used,

namely T. parva Marikebuni (stabilate 3292), from coastal Kenya, and Uganda (stabilate

3645), from northwest Uganda. These three isolates, originally obtained from cattle, are hence-

forth designated as “cattle-transmissible” or “cattle-derived”. To determine the success of this

approach for buffalo-derived T. parva, we used an isolate from Buffalo 7014 (stabilate 3081),

originally derived from an African Cape buffalo, which we refer to as Buffalo_3081. Library

preparation was initiated using 900–1200 ng of total DNA, generated from the extraction of

DNA from infected lymphocyte cultures (S2 Table). The proportion of T. parva DNA in each

sample was 1.9%, 3.1%, 0.9% and 1.7% for BV115, Marikebuni, Uganda and Buffalo_3081,

respectively, with the remainder being host DNA [36] (Table 1).

For each sample, the gDNA shearing length targeted was 500–700 bp, with average size of

captured fragments between 446 and 619 bp. Libraries were sequenced with either Illumina

HiSeq 2000 or MiSeq platforms, and 5,687,838 to 12,174,316 sequence reads were generated

for each sample and mapped to the T. parva reference genome (S2 Table).

Approach specificity, sensitivity and accuracy

The specificity of the capture approach used is defined here as the fraction of the BV115

sequence reads that map to the parasite reference genome. Specificity of the approach was very

high, with>98% of BV115 reads generated mapping uniquely to the T. parva reference

genome (Table 1), a nearly-perfect, 50.5-fold enrichment for parasite DNA. The remaining

1.97% of mapped reads in the present study originated from the host genome.

Sensitivity of the approach is defined here as the fraction of the reference genome to which

the BV115 sequence reads map. The sensitivity of this capture approach, based on this probe

Table 1. Specificity and sensitivity of the capture-based parasite DNA enrichment approach.

Isolate Pre-enrichment Theileria gDNA (%)a Total reads generatedb Total reads aligned Mean coveragec Specificity (%)d Sensitivity (%)e

BV115 1.94 12,174,316 11,952,650 146X 98.03 99.80

Marikebuni 3292 3.05 7,204,556 6,740,297 202X 96.47 97.70

Uganda 3645 0.92 5,687,838 5,313,295 157X 97.52 98.34

Buffalo_3081 1.72 6,080,972 5,446,541 160X 96.40 97.59

a Proportion of the original DNA sample that is composed of T. parva DNA, as measured by qPCR [36].
b Read length for BV115 was 101 bp and 250 bp for the other three strains.
c Estimation: (Total_reads_aligned�Mean_read_length)/genome_size. The genome size used was the sum of the nuclear and apicoplast reference genomes targeted.
d Percent reads generated that mapped to T. parva reference genome.
e Percent of the T. parva reference genome to which reads map.

https://doi.org/10.1371/journal.pntd.0008781.t001
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set, is 99.8%. Not only were all regions of the reference genome against which probes were

designed recovered but, in fact, the fraction of the reference genome that is covered by Illu-

mina sequence reads is larger than 95.5%, the fraction of the genome that is covered by

probes (Fig 2, Table 1). This result demonstrates that we successfully captured segments of

the genome that are not included in the probe set, as intended with the experimental design

described above. As a result of the high sensitivity of this approach, despite the 3,843 gaps in

probe coverage of the T. parva genome, the number of segments of the genome with 0X cov-

erage from read mapping was 42, with average length of 402.6 bp (Fig 1). This was because

repeats or low complexity regions eliminated from the probe set were captured in fragments

that also contained neighboring unique regions for which capture by the probes was

efficient.

The generation of whole genome sequence (WGS) data based on this capture approach

includes one amplification step. To verify the accuracy of the WGS data, and in particular to

assess its error rate, we mapped the sequence reads against the reference Muguga genome

assembly [29], and identified SNPs. Despite the differences in library protocol, sequencing

platforms and data preparation we identified only 107 SNPs across the entire 8.31 Mb genome,

for a SNP density of ~1x10-5 SNPs/bp, below the sequencing error of the Illumina platform,

and thus providing independent confirmation of the quality of the data generated here

(S3 Table).

Capture specificity and sensitivity for non-reference strains

Both specificity (96.4% - 97.5%) and sensitivity (97.6% - 98.3%) were very high albeit slightly

lower for non-reference T. parva isolates than they were for BV115 (Table 1). However, these

values are likely underestimates. Some T. parva genes, including those coding for known anti-

gens and some proteins involved in host-parasite interactions, are known to be highly variable,

with polymorphism >2%, and possibly much higher [27]. This level of polymorphism poses

potential challenges at two levels: i) decreased capture efficiency with increasing sequence

divergence between probes and target sequences, and (ii) lack of read mapping beyond a

sequence divergence threshold between sequence reads and genome reference. The former

will result in decreased sensitivity while the latter will result in underestimation of both speci-

ficity and sensitivity.

To determine which of these two factors is responsible for the lower sensitivity in the three

non-reference isolates relative to BV115, we generated de novo genome assemblies for each

isolate, based on the sequence capture data, and compared coverage of each Muguga locus by

read mapping to the completeness of the locus sequence extracted from each de novo assembly

(see section on “Sequence variant detection” below). Draft genome assemblies for the non-ref-

erence cattle-derived T. parva strains used in this study (namely, Marikebuni and Uganda)

were generated before [65]. These were generated with DNA obtained from purified piro-

plasms collected from blood of animals infected with each clonal cell line, which was then

sequenced with 454 pyrosequencing technology and assembled. Hence, the input DNA con-

sisted of the complete genome of each strain and these draft assemblies should be fairly com-

plete, except potentially for repetitive regions that could not be completely resolved. These

assemblies enabled the estimation of sensitivity of the capture approach relative to each ortho-

logous reference genome, which corresponds to the percent of the respective reference genome

with coverage by reads obtained from capture in the current study, which was 98.6% for Mari-

kebuni and 99.3% for Uganda (S4 Table). The vast majority of the missed segments are likely

either subtelomeric repeats or members of repeat families that could not be unambiguously

assembled.
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Fig 2. Alignment of probe coverage and read mapping in T. parva nuclear chromosomes. For each of the four T. parva nuclear chromosomes, starting from the

outer-most circle, the following tracks are shown: chromosome scaffolds (light blue); assembly contigs (dark blue); genes encoded in the forward strand, including
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De novo genome assemblies based on whole genome sequence capture data

We built several assemblies with the BV115 data, varying the assembly software and genome

depth of coverage, and selected the assembly with the longest N50 and cumulative length. For

the reference strain, represented by BV115, nearly every gene was represented in full in the de
novo genome assembly, and only 7 genes (<0.2% of all genes) were completely absent (S5

Table). The missing genes are located in the most probe-poor regions of the genome, and

mainly consist of SVSP multigene family members [66]. In contrast to the assembly data,

when the BV115 sequence reads were mapped directly to the reference genome there were no

nuclear genes completely or partially missing, demonstrating that despite gaps in probe cover-

age, we were able to obtain complete nuclear gene coverage in our positive control isolate, and

that the fact that some of these genes are missing in the assembly may be due to the difficulty

to unambiguously assemble these regions. The Tpr locus, which spans a central region of chro-

mosome 3, is represented in the reference genome assembly by two small contigs plus the edge

of one of the two larger chromosome 3 contigs [29]. Interestingly, despite the near complete

lack of probes in the Tpr locus, in BV115 we were able to capture reads that map to most of the

locus (Fig 2) and reconstruct partially assembled contigs for this chromosomal region (Fig 3).

This suggests that, in the reference Muguga strain (used to infect animal BV115, and the

protein-coding (black), rDNA (green) and tRNA (red) genes; genes encoded in the reverse strand (protein-coding, rDNA, and tRNAs); regions covered by probes

(purple); BV115 coverage (absolute read counts in 5kb windows; maximum shown is 500) (black); Marikebuni coverage (green); Uganda coverage (orange);

Buffalo_3081 coverage (sky blue). Chromosomal regions without probes that are�500 bp are magnified 5000X and highlighted in transparent light green across the

tracks showing chromosome, contig, forward and reverse strand genes, and probe coverage. The proteins encoded within these regions without probes are labeled,

with the key for each chromosome listed on the bottom left of each plot.

https://doi.org/10.1371/journal.pntd.0008781.g002

Fig 3. De novo genome assemblies for four T. parva isolates. In the reference assembly (Muguga), chromosomes 1

and 2 are represented by single scaffolds. The four contigs representing chromosome 3 and the two contigs of

chromosome 4 were each merged and are shown as a single scaffold. Assemblies for the four new isolates were

generated with SPAdes, and aligned to the T. parva Muguga reference, using nucmer. Scaffold placement was centered

on the midpoint of each alignment. All gene families with>10 paralogs are colored in the reference Muguga strain.

The main genomic regions underrepresented in the new assemblies contain several members of T. parva multigene

families, including the Tpr locus (a total of 24 Tpr genes within the two contigs central in chromosome 3), and SVSP

family (15 SVSP genes in the first 20kb in the 50 end of chromosome 4, shown at the bottom).

https://doi.org/10.1371/journal.pntd.0008781.g003
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reference used for probe design), either a Tpr gene outside of the Tpr locus is similar enough

in sequence for probes based on its sequence to cross-capture the Tpr locus, or that the few

probes present in this Tpr locus region were sufficient to anchor and capture sequence frag-

ments that span most of this region of chromosome 3.

De novo assemblies were also generated for the three non-reference genotypes. They each con-

sist of<130 scaffolds and encompass>95.6% of the reference T. parva genome assembly (Fig 3;

S5 Table. In each case, fewer than 2% of the nuclear genes were completely missing: 56 in Marike-

buni, 31 in Uganda, and 27 in Buffalo_3081. One notable area lacking assembly coverage in all

three genome assemblies was the Tpr locus. While these genes were not difficult to capture in the

BV115, read coverage is poor in the non-reference isolates, suggesting that the reference-based

probes failed to capture these genes in other genomes, consistent with the hyper variability of this

gene family [67]. Of the 39 Tpr genes, including dispersed copies present throughout the genome,

only six were recovered either partially or completely in all three non-reference genotypes. For

each strain, there were several contigs that were not incorporated into the respective genome

assembly. These contigs contain sequences with homology to a number of T. parva genes, a

majority of which are members of multigene families or hypothetical proteins (S6 Table).

Sequence and structural accuracy of de novo assemblies

To correct possible errors and validate the de novo assemblies, a number of steps were taken.

Illumina reads for each of the four strains were mapped to their respective de novo assembly.

The number of nucleotide differences detected varied between 73 in BV115 and 431 in Buf-

falo_3081. Assemblies were then polished with Pilon [46] which corrected several of the differ-

ences identified (S4 Table). The remainder may represent non-specific read mapping in

regions of multigene families, regions with insufficient read coverage for sequence correction

or variants segregating in culture at the time of DNA isolation.

The draft assemblies for the non-reference cattle-derived T. parva strains used in this

study, generated before with 454 data [65], allowed validation of the sequence data and

assemblies generated here with a capture-based approach. Alignment of the Illumina reads

to the 454-based assemblies yielded 203, and 79 SNPs respectively for the Marikebuni and

Uganda strains, for a density of <1–2 x 10−5 differences per bp. In addition, the BV115 reads

were mapped against the Muguga reference genome, with 107 differences identified. All

these values fall within the margin of error of Illumina sequencing, again consistent with the

high quality of the data generated. Alignment of our de novo assemblies to the previously

generated 454-based assemblies resulted in a similarly low number of SNPs in each of the

three strains (S4 Table).

Finally, when comparing the structure of the BV115 assembly to the Muguga reference, a

total of 26 structural variants were detected, with a cumulative length of 11,388 bp (S7 Table).

The Marikebuni and Uganda de novo assemblies were compared to their respective reference

assemblies generated from 454 sequencing data [65]. The 454-based assemblies consist of 985

and 507 contigs, respectively for Marikebuni and Uganda. These comparisons each yielded 11

or fewer structural variants, totaling at most ~1000 bp in length (S7 Table). We observed a

considerably larger number and cumulative length of structural variants in BV115 relative to

its reference compared to what is observed for the other two cattle-derived genotypes, which is

possibly an artifact of the high fragmentation of the Marikebuni and Uganda 454 sequencing-

based reference genomes (which may prevent the detection of structural differences) relative

to the nearly closed Muguga reference. The very low number of cumulative base pairs affected

by these variants highlight the high accuracy of the de novo assemblies build with the capture

data.
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First genome assembly for a buffalo-derived T. parva parasite

The generation of de novo genome assemblies allows a comprehensive characterization of differ-

ences in homologous genomic regions between new strains and the reference. It also makes it pos-

sible to characterize missing and unique regions in the new genomes, provided that those regions

flank regions that match probes, or that they represent duplicated regions with high sequence sim-

ilarity to probe-covered genomic segments in the reference. In these situations, de novo assemblies

also provide a clear advantage for genome characterization over read mapping approaches.

The alignment of the Buffalo_3081 assembly to the Muguga reference revealed >300 struc-

tural variants in regions of sequence homology between genomes, affecting a cumulative

length of 128,750 bp. These included insertions/expansions totaling a gain of 61,632 bp (83

insertions totaling 17,534 bp in length, 26 tandem duplications totaling 20,000 bp, and 71

repeat expansions totaling 24,098 bp) as well as structural changes resulting in genome reduc-

tion, namely deletions and contractions amounting to a loss of 67,118 bp (S8 Table). This sug-

gests that rates of repeat expansion and contraction are fairly balanced.

Overall, however, the genome assembly of the buffalo-derived isolate (Buffalo_3081) is

8,366,826 bp long (S5 Table), ~20 Kb longer than the reference T. parva Muguga assembly,

despite missing genomic regions for which probes were not designed. Compared to that of

BV115, which was used as a positive control, the Buffalo_3081 assembly is approximately 130

Kb longer, which supports the hypothesis that the Buffalo_3081 genome is indeed longer.

Therefore, we sought to characterize regions unique to the genome of the buffalo parasite.

The automated annotation of the assembly with GeneMark-ES identified new potential

genes in regions without reference Muguga gene structures transferred with GMAP to the Buf-

falo_3081 assembly. In total, 19 genes represented additional copies of T. parva genes present

elsewhere in the genome, typically in close proximity to their homologs in T. parva, based on

top BLAST hits. They encoded mostly hypothetical proteins, plus several putative integral

membrane proteins. An additional group of six non-syntenic genes were most similar to

homologs found in Theileria annulata or Theileria orientalis (S9 Table), but not found in T.

parva. Those with best matches to T. annulata included hypothetical proteins, a tRNA-pseu-

douridine synthase I, and a mitochondrial ribosomal protein S14 precursor gene. The single-

copy gene with a best match to T. orientalis aligned to a region of chromosome 2 of T. orienta-
lis (strain Shintoku) with no genes currently annotated.

These 25 new potential genes described above were run through several prediction software

packages for further characterization. There were two predicted proteins with five or greater

transmembrane helices, a feature usually associated with transmembrane proteins. There were

seven genes predicted to contain signal peptide cleavage sites, and no genes were predicted to

be GPI-anchored.

A previous study generated whole genome sequence data for a buffalo-derived T. parva iso-

late, referred to as Buffalo LAWR [28]. Interestingly, when we mapped reads from that isolate

against the Buffalo_3081 genome assembly, we identified 87,837 SNPs, suggesting that the T.

parva population associated with buffalo is very diverse genetically, with nearly as many SNPs

differentiating buffalo-derived strains as those found in comparisons between genotypes from

buffalo vs. cattle. This read mapping resulted in an average coverage of 34X of the 25 potential

new genes encoded in the genome of T. parva Buffalo_3081, similar to the average genome

coverage of 27X, supporting their existence.

Sequence variant detection by read mapping and assembly comparison

To determine if the reconstruction of de novo draft genome assemblies with the capture data

results in additional power to study rapidly evolving antigens compared to the more common
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read mapping-based approach, we identified sequence variants with both methods. Alignment

of sequence reads generated for the two non-reference cattle-derived clones, Marikebuni and

Uganda, against the reference genome, followed by stringent SNP calling and filtering, yielded

40,228 and 40,835 SNPs. For the buffalo-derived isolate, Buffalo_3081, sequence variant calling

resulted in 91,840 SNPs (Fig 2). These values are based on a very high proportion of the

genome (S3 Table). These numbers of SNPs are similar to those detected in other cattle-

derived isolates in a previous study, which also used a read mapping based approach [28].

A greater number of SNPs was detected by aligning each new assembly to the reference

genome and identifying sequence variants (S2 Fig). A total of 55,421 SNPs and 52,385 SNPs

were detected in the Marikebuni and Uganda genome assemblies, respectively. Similarly, there

were also more SNPs detected in the Buffalo_3081 isolate (n = 124,244) based on assembly

comparison, than those detected by read mapping. In each case, ~25% more SNPs were identi-

fied by assembly comparison relative to read mapping.

The discrepancy in SNP counts is due to the fact that reads fail to map to their orthologous

regions when the sequence is highly variable between genomes, while these loci are neverthe-

less present in the de novo assembly and can be readily compared across strains. This is further

supported by our estimates of gene coverage by each of the methods. In each of the non-refer-

ence genotypes, the read mapping approach had, on average, worse gene coverage than the

respective coverage using assembly generation (Fig 4; S5 Table). Overall, 98.1% of the nuclear

genes were recovered in their entirety in BV115 using both read mapping and assembly align-

ment. In Marikebuni and Uganda the value was 94.7% and 94.8%, respectively, and 93.6% the

Buffalo_3081 strain. Among the 56 nuclear genes not fully recovered in all four genotypes,

Fig 4. Read mapping and assembly alignment gene coverage in partially covered genes. For each gene of the 4,094

nuclear genes not exhibiting 100% coverage when using both read mapping and assembly alignment to the Muguga

reference, the percent of the gene covered using each alignment method is shown in the scatter plot for each of the four

isolates. The histograms along the top and right side of the plot show the distribution of gene coverage for read

mapping and assembly alignment, respectively. The number of nuclear genes covered 100% using both alignment

methods were: BV115–4,015; Marikebuni—3,876; Uganda—3,883; Buffalo_3081–3,831.

https://doi.org/10.1371/journal.pntd.0008781.g004
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there were no known single-copy antigens. Most of these genes were located in sub-telomeric

regions that are composed of highly repetitive DNA sequences and genes belonging primarily

to multigene families (Fig 3), while the rest were members of the Tpr gene family that occur in

the highly repetitive Tpr locus of chromosome 3, and hence more difficult to capture since we

did not retain probes that mapped to more than five locations in the genome.

Variation in protein-coding regions

The high degree of completeness of the genome assemblies makes it possible to obtain esti-

mates of the rates of non-synonymous and synonymous polymorphisms per site, πN and πS

respectively, for almost all genes in the genome. This could not be done before due to incom-

plete read mapping across highly divergent orthologs [35]. We calculated πN and πS among the

cattle-transmissible isolates (Uganda, Marikebuni and the reference, Muguga), as well as

between the Buffalo_3081 isolate and the reference Muguga (S10 Table). Even though esti-

mates of πN and πS (within species polymorphism)are not reliable estimators of the substitu-

tions rates quantified by dN and dS [68], especially for very small values of π, the relative

magnitude of πN across genes and the ratio πN/πS, when defined, may still be informative for

the identification of rapidly evolving proteins [67, 69, 70].

Among cattle genotypes, the median πN and πS across all protein-coding genes were 0.1%

and 1.4%, respectively, and the corresponding values for the divergence between a cattle

(Muguga) and a buffalo (Buffalo_3081) strain were 0.6% and 6.1%, respectively (S11 Table).

As expected, the ratio πN/πS is lower in the Muguga-Buffalo_3081 comparison, since natural

selection has had more time to remove slightly deleterious mutations compared to the compar-

ison among cattle strains (Fig 5A). Despite the elimination of a relatively higher number of del-

eterious mutations between Muguga-Buffalo_3081 than among cattle strains, πN is still slightly

higher in the former comparison because the most recent common ancestor (MRCA) of the

Muguga-Buffalo_3081 strains is older than the MRCA of the cattle genotypes (Fig 5B).

Among 37 genes that have been identified as antigens, the average difference in non-synon-

ymous sites between Buffalo_3081 and the ortholog in the reference Muguga was 2.4%, but

with a wide range among genes, from 0 to>20%, and a standard deviation of 4.4% (Table 2;

Fig 5. Nucleotide diversity in amino acid-changing (πN) and silent (πS) sites. a. Rates of nucleotide diversity in non-

synonymous (πN) and synonymous (πS) sites for all genes in the Muguga reference genome, both among the cattle

strains (Muguga, Marikebuni and Uganda), and between the reference Muguga and the Buffalo_3081. The black

regression line corresponds to π value for genes among cattle, the light blue regression line corresponds to the π value

for genes among buffalo, and the black line represents y = x. b. For each gene, πN among cattle strains (X axis) is

compared with πN in a buffalo-derived strain relative to the reference Muguga, (Y axis). Known antigens are colored

red. The estimated slope regression line is shown, with a slope of 0.99. The R-squared value for the regression is 0.282.

Note the shorter axes in 5b.

https://doi.org/10.1371/journal.pntd.0008781.g005
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Table 2. Antigen sequence recovery in T. parva “Buffalo_3081” and divergence relative to Muguga.

Locus tag1 Product

Name

Functional Annotation Gene

length2

(bp)

Read mapping

coverage3 (%)

Assembly

alignment

coverage4 (%)

Muguga vs.
Buffalo_3081 πN

(%)

Gene rank Muguga-

Buffalo_3081 πN

(n = 4076)

TpMuguga_01g00056 Tp2 Hypothetical protein 1422 80.17 100 12.5 41

TpMuguga_01g00188 Tp6 Prohibitin 1104 100 100 0 3387

TpMuguga_01g00320 11E Glutaredoxin-like protein 956 100 100 0.3 2769

TpMuguga_01g00726 Tp16 translation elongation

factor EF-1 subunit alpha

1316 100 100 1.3 1008

TpMuguga_01g00868 Tp3 Hypothetical protein 856 100 100 1.2 1120

TpMuguga_01g00939 gp34 Schizont surface protein 1067 100 100 0.7 1776

TpMuguga_01g01056 p32 32 kDa surface antigen 1139 100 100 4.5 228

TpMuguga_01g01074 Tp14 Haloacid dehalogenase-like

hydrolase

1420 100 100 1.3 962

TpMuguga_01g01077 Tp17 Haloacid dehalogenase-like

hydrolase

1138 100 100 0.6 1976

TpMuguga_01g01078 Tp21 Haloacid dehalogenase-like

hydrolase

1189 100 100 0.7 1740

TpMuguga_01g01081 Tp22 Haloacid dehalogenase-like

hydrolase

1376 100 100 1.3 977

TpMuguga_01g01082 Tp23 Haloacid dehalogenase-like

hydrolase

1274 100 100 0.4 2371

TpMuguga_01g01182 Tp24 Lactate/malate

dehydrogenase

1704 100 100 0.1 3198

TpMuguga_01g01225 Tp25 SVSP family protein 1671 100 100 2.2 541

TpMuguga_02g00010 Tp26 SVSP family protein 1404 99.00 0 0.3 NA

TpMuguga_02g00123 Tp32 DEAD/DEAH box helicase 1692 100 100 0 3388

TpMuguga_02g00140 Tp8 Cysteine proteinase 1523 100 100 0.2 3010

TpMuguga_02g00148 X88 Heat shock protein 2239 100 100 0 3389

TpMuguga_02g00243 Tp27 Heat shock protein

homolog pss1

3048 100 100 0.1 3287

TpMuguga_02g00244 Tp7 HSP 90 3091 100 100 0.1 3256

TpMuguga_02g00767 Tp5 Translation initiation factor

eIF-1A

939 100 100 0 3390

TpMuguga_02g00895 Tp9 Hypothetical protein 1197 44.53 100 21.0 6

TpMuguga_02g00958 Tp28 SVSP family protein 2097 100 100 3.6 297

TpMuguga_03g00210 Tp4 T-complex protein 1

subunit eta

2763 100 100 0.1 3164

TpMuguga_03g00263 Tp33 Hypothetical protein 2605 100 100 1.1 1167

TpMuguga_03g00287 p67 p67 protein 2175 100 100 3.6 295

TpMuguga_03g00655 Tp13 Hypothetical protein 1476 100 100 0.3 2774

TpMuguga_03g00849 Tp1 Hypothetical protein 1822 100 100 1.9 633

TpMuguga_03g00861 p150 p150 microsphere antigen 4749 100 100 1.6 793

TpMuguga_04g00051 PIM Polymorphic

immunodominant

molecule

1559 65.84 100 11.8 52

TpMuguga_04g00164 - Tash protein PEST motif

family protein

1808 99.95 100 7.8 116

TpMuguga_04g00437 p104 104 kDa antigen 3143 100 100 1.8 656

TpMuguga_04g00683 Tp29 78 kDa antigen 2653 100 100 0.1 3370

TpMuguga_04g00752 Tp30 Ribosomal protein S27a

family protein

664 100 100 0.3 2828

TpMuguga_04g00772 Tp10 Coronin 2402 100 100 0.1 3305

(Continued)
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S12 Table). Three antigens identified previously as highly polymorphic [71] are the ones with

the highest πN values between Buffalo_3081 and the reference, namely Tp2, Tp9 and PIM

(Table 2). As has been show in other Apicomplexa [72], most polymorphisms are found in

genes likely to be involved in host-pathogen interactions, such as those listed above with the

highest polymorphisms in Table 2, along with Tp1 and p67. Antigen p67 in particular has

been shown to be highly conserved among cattle-derived T. parva, but demonstrate polymor-

phisms in buffalo-derived T. parva [73]. Our ability to capture all antigens with near complete

coverage using at least one of the approaches demonstrates the value of the capture approach.

The ability to fully sequence these antigens in the cattle-and buffalo-derived populations will

be useful if future vaccine development against T. parva moves toward subunit vaccines [74],

as well as understanding how polymorphism levels in specific genes play a role in interactions

with drugs that might target them.

To identify rapidly evolving genes, we looked for patterns among the 200 (~5%) genes in

three classes: i) the highest πN value among cattle genotypes, (ii) the highest πN value between

cattle (Muguga) and buffalo (Buffalo_3081) genotypes, or (iii) the highest πN/πS between cattle

(Muguga) and buffalo (Buffalo_3081), the most divergent strains. In all three classes, ~90

genes were annotated as hypothetical, 53 of which were present in two classes and 16 were

present in all three classes (S13 Table).

Gene families that were most variable in all three classes included SVSP family proteins,

Tpr family proteins, and genes annotated as putative integral membrane family proteins. It is

not surprising that the SVSP family genes would have high π values, regardless of host, given

their localization in sub-telomeric regions and high level of repetitiveness, which are often cor-

related with higher levels of sequence variation [66]. Likewise, the Tpr genes have high levels of

sequence variation; this is consistent with their classification as rapidly evolving, antigenic pro-

teins [67, 75]. A number of previously identified antigens also appeared on the list, including

Tp1 [76], which demonstrated a high πN/πS ratio, and Tp2 and Tp9, which appeared in all

three classes. These results are consistent with recent findings which demonstrated that, of ten

previously studied T. parva antigens, these three antigens were observed to have the highest

level of nucleotide diversity [77].

When comparing only πN of genes among cattle to πN of genes relative to buffalo, the esti-

mated slope was 0.99, showing that the relative rate of non-synonymous divergence across

genes is similar in the two populations (Fig 5B). However, an r2 value of 0.282 shows that the

regression is not very predictive. Some genes deviate considerably from the regression line, a

pattern consistent with differential, host-specific selection in cattle vs. buffalo (Fig 5B), possibly

warranting functional investigation. As expected, known antigens are among the most rapidly

evolving genes.

Table 2. (Continued)

Locus tag1 Product

Name

Functional Annotation Gene

length2

(bp)

Read mapping

coverage3 (%)

Assembly

alignment

coverage4 (%)

Muguga vs.
Buffalo_3081 πN

(%)

Gene rank Muguga-

Buffalo_3081 πN

(n = 4076)

TpMuguga_04g00916 Tp15 SVSP family protein 1765 100 100 1.7 714

TpMuguga_04g00917 Tp31 SVSP family protein 1647 100 100 2.0 590

1The genes are listed in alphanumerical order, by chromosome and gene order.
2Gene length of the reference Muguga allele.
3Proportion of Muguga allele with mapping of T. parva Buffalo_3081 reads.
4Proportion of Muguga allele aligned to the ortholog from the T. parva Buffalo_3081.

https://doi.org/10.1371/journal.pntd.0008781.t002
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Genomic divergence between cattle- and buffalo-derived T. parva
Hayashida and colleagues [28] demonstrated that a greater sequence divergence existed

between buffalo-derived genotypes and Muguga (103,880–121,545 SNPs), compared to what

was observed among cattle-derived isolates (34,814–51,790 SNPs). The same study found that

there was no significant evidence for recombination between cattle- and buffalo-derived T.

parva, the two populations perhaps having evolved a genetic barrier to recombination. Such a

barrier may be due to the absence of piroplasm stages in cattle infected with buffalo-derived

genotypes and hence the lack of opportunity for co-transmission of cattle- and buffalo-derived

parasites in the same tick [78].

To determine genetic differentiation between cattle- and buffalo-derived T. parva, and

potentially unusually differentiated loci associated with host adaptation, we estimated Wright’s

FST, which estimates the amount of genetic variation in the population that is due to differ-

ences between the two subgroups. FST varies between 0 (panmictic population) and 1 (com-

plete differentiation, with the two subgroups fixed for different alleles at all variable genomic

sites). We used the data generated here together with data for distinct strains from Hayashida

et al. (2013). This analysis showed a mean genome-wide FST value of 0.436 (S3 Fig). The distri-

bution of FST varies considerably across each of the four nuclear chromosomes, with some

regions in the genome nearly fixed for different variants and others homogeneous among cat-

tle- and buffalo-derived strains (S4 Fig). Approximately 3,000 sites (0.036% of the genome),

distributed throughout the genome, were found to have an FST value that reached genome-

wide significance. These patterns of divergence are consistent with an evolutionary old diver-

gence and extensive population differentiation, preventing the identification of specific genes

involved in host-specific strain adaptation. Interestingly, though, this extent of divergence in

allele frequency does lend support to the assertion that these are two distinct, host-associated

parasite populations. An FST analysis comparing isolates from different studies, but collected

from the same host, resulted in an FST value of 0, ensuring that our comparison between host-

associated genotypes is not due to methodological biases of data collected in different studies.

These conclusions are somewhat limited by the relatively low genome sequence coverage for

samples collected in previous studies (Hayashida et al. 2013). A more conclusive study on this

topic will require higher coverage from multiple cattle and buffalo T. parva genotypes. It is

worth noting that previous studies using variable number tandem repeats suggested that T.

parva populations in co-grazing cattle and buffalo, in central Uganda, were essentially distinct

[25].

Apicoplast genomes

The apicoplast genome from the Muguga reference strain is 39,579 base pairs long and contains

70 genes. The probe set covered 64 of the genes either fully or partially (S1 Table). Aligning

sequence reads of all three non-reference isolates achieved complete coverage of all 70 genes

encoded by the Muguga apicoplast genome. The assemblies also contained the nearly full gene

complement of the Muguga apicoplast, as all 70 genes were covered completely in Marikebuni,

and 68 were covered completely in the Uganda and Buffalo_3081 apicoplast assemblies. The

two partially covered genes in the Uganda strain apicoplast are TpMuguga_05g00034 (37%)

and TpMuguga_05g00040 (93%). In the apicoplast of Buffalo_3081, TpMuguga_05g00037 was

covered partially (66%) and TpMuguga_05g00036 was not covered at all.

This fairly complete apicoplast gene set allowed the evaluation of nucleotide diversity per

gene. Among cattle isolates, the mean πN and πS values were both 0.2% (S11 Table), less than

half the mean values for any of the four nuclear chromosomes. The πN value between the buf-

falo isolate and the reference was 0.4%, and the πS value was 2.1% (S10 Table). As expected,
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these values are greater than the nucleotide diversity among cattle strains, but still considerably

lower than the mean nucleotide diversity in nuclear genes among buffalo strains. This suggests

that apicoplast genes evolve slower than nuclear genes. Given the role of the apicoplast genes

in basic metabolic processes [79], they are expected to be highly conserved. Indeed, high levels

of apicoplast sequence conservation have been observed across several Apicomplexa species

[80].

Discussion

This study demonstrates that high quality whole genome sequence data can be generated for

intracellular protozoan-infected mammalian cell lines, despite the large excess of host DNA,

using a custom oligonucleotide genome capture array. This approach can be costly, adding

between $100 and $500 per sample, depending on the kit size (number of reactions pur-

chased), the degree of multiplexing (how many samples captured per reaction), and possible

labor costs added to library preparation due to the capture reaction. Additional sequences of

T. parva have been published since the original T. parva reference genome was published in

2005 [29], including those using pyrosequencing technology on DNA extracted from piro-

plasm-rich blood from infected animals [65], or from lysis of infected lymphocytes [28]. How-

ever, these alternatives have limitations. The first approach is not feasible on a large scale, due

to animal costs, ethical considerations, and the extensive labor required. The second approach

utilizes a schizont purification method from infected cells that has been shown to successfully

recover intact parasites, but reports relatively high proportions of host DNA, where at most

80% of reads generated mapped to the T. parva reference, increasing sequencing costs and at

least partially offsetting the costs associated with capture. In contrast, in the current study, we

demonstrate a high level of specificity, where greater than 96% of reads map to the T. parva ref-

erence, and present an approach that is both high-throughput and less labor-intensive than the

alternatives. Future studies should test the applicability of this approach directly to clinical

samples (biopsies), obviating the need to culture in lymphocytes, and to tick salivary gland

material, which would greatly facilitate the characterization natural variation in the T. parva
population without the need to passage through cattle.

The whole genome capture method described in the present study, with close to 100% spec-

ificity and sensitivity, also represents an advancement in targeted enrichment when compared

to approaches previously applied to apicomplexan parasites. An implementation of hybrid

selection using whole genome “baits” for the parasite Plasmodium falciparum yielded an aver-

age of 37-fold enrichment with unamplified samples, and no samples with >50% parasite

DNA [81]. A previous application of DNA capture to the apicomplexan Plasmodium vivax
had a maximum specificity of 80% and sensitivity as low as 84.7% [37]. Three key differences

between the present and previous studies are (i) the length of the sheared DNA (here >450 bp,

but for example, only 200 bp in [37]), (ii) the small probe length (here ~76 bp, compared to

140 bp in [81]), and (iii) inclusion of probes that map both coding and non-coding regions

(e.g., only probes to exons were included in [81]). The first point was intended to facilitate the

capture of rapidly evolving or highly variable genomic segments flanking those more con-

served and, consequently, matching the probes. The second aimed to maximize the proportion

of genome with probe hybridization. Finally, the inclusion of probes to exons as well as introns

and intergenic regions was intended to maximize genome recovery and enable genome assem-

bly. Extreme nucleotide composition, such as close to 100% AT content in some intergenic

regions and introns in P. falciparum, will limit the applicability of these strategies.

The sequences reported here represent the first whole genome datasets from T. parva with

sufficient quality and depth of coverage to allow the generation of de novo genome assemblies
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from DNA extracted from infected lymphocyte cultures. This opens a new area for high-

throughput genotyping of T. parva field isolates of both cattle and buffalo origin, and poten-

tially those isolated from the tick vector. The design of the current probe set eliminated probes

whose sequence was found five or more times in the reference genome. As a result, multigene

families make up a large portion of the genes not recovered, especially those in the Tpr locus,

which contains copies with a high degree of sequence similarity[29]. Attempts to improve

upon the current results might exclude restrictions of probe copy number representation, and

also consider using unique sequences from other T. parva strains, including those derived

from buffalo. Given that the function of the Tpr gene, which comprises one of the largest mul-

tigene families in T. parva, is unknown [29], the ability to study this gene family is important.

While a number of Tpr orthologs have been identified in other Theileria species [82–84], little

is known about this multigene family beyond its 30 end conserved domain, which contains sev-

eral transmembrane helices, suggesting that it is an integral membrane protein [75].

As we have shown, de novo genome assembly allows the in-depth characterization of

genetic polymorphism, which can provide novel insights into population variation and the

evolution of this parasite and enable the study of rapidly evolving proteins and protein families

of interest. Our study reveals tremendous genetic polymorphism between T. parva genotypes,

even among just those that are cattle-derived. The average nucleotide diversity among cattle-

derived T. parva (~6.5 SNPs/kb) is higher than the 4.23 to 6.29 SNP/kb reported before [28].

This is likely attributed to the high sensitivity and specificity of the approach used here, and

the resulting ability to reconstruct fairly complete draft genome assemblies. The SNP density

observed is also considerably higher than that seen among strains of the malaria-causing api-

complexan P. falciparum, of ~1 to 2.3 SNP/kb [85, 86]. This result is explained by the long co-

evolution of T. parva with the African Cape buffalo, its asymptomatic carrier, dating back mil-

lions of years [87]. Therefore, its most recent common ancestor is much older than that of P.

falciparum, which likely emerged as a result of a relatively recent host transfer from gorilla

[88]. The existence of a ECF vaccine that is effective against cattle-transmitted T. parva, despite

the greater SNP density among cattle-derived T. parva strains than observed among P. falcipa-
rum or even P. vivax strains, is highly encouraging, as it suggests that Plasmodium genetic

diversity per se is not an insurmountable obstacle to the development of an effective vaccine.

The generation of the first genome assembly for a buffalo-derived T. parva strain presents

an improvement upon the previous sequencing of a buffalo strain. Here we generated 250 bp-

long reads, which enabled the generation of a draft genome assembly, while before 36 bp read

data was generated, and the strain genotyped by read mapping against the reference [28]. This

allows us to address, with a high degree of certainty, several long-standing questions in the

field. For example, previous studies based both on discrete loci and low coverage genome-wide

data [27, 28], suggested that cattle-derived T. parva is significantly less diverse than the buf-

falo-derived T. parva population, an assertion supported by our study, which is based on

whole-genome sequence data with very high depth of coverage. We also determined that

genome size variation exists between cattle- and buffalo-derived parasites, and identified novel

genes in the genome of a buffalo-derived strain, which account for a large proportion of its

longer overall genome assembly. It is also noteworthy that the majority of the open reading

frames unique to Buffalo_3081 were additional copies of genes present in the T. parva refer-

ence genome. At this point it remains unknown if this is simply due to the whole-genome cap-

ture approach used, which is limited to the probes based on the reference genome and their

flanking regions, or if in fact T. parva (and eukaryotic parasite genomes in general) have a

fairly closed pan genome, in which the acquisition of novel genes is very rare and new gene

coding sequences (CDSs) are, instead, primarily the outcome of gene duplications and other

gene family expansions, followed by rapid sequence divergence [89, 90]. A larger sample size
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of genomes analyzed will facilitate the exploration of this issue and elucidate whether the

observed pattern is due to gene duplication in buffalo-derived T. parva or gene loss in cattle-

derived strains.

Characterization of buffalo-derived parasites was necessary to start to identify differences

between the two subsets of parasites. Based on this limited sample size, the genome-wide FST

value of 0.436 hints at a strong differentiation between the two subpopulations of T. parva.

This FST value is much higher than observed between P. falciparum populations sampled

across Africa, which ranged between 0.01–0.11 [91]. We also identified a high SNP density

between the buffalo isolate and the Muguga reference—nearly double the SNPs detected

among cattle isolates, as well as a large number of structural variants. Adding to this genetic

evidence of separate host-associated populations are several epidemiological clues [reviewed in

92]. These include the fact that tick transmission of buffalo-derived T. parva to other cattle has

only been achieved on a few occasions and at low efficiency [93, 94], and previously described

immunological observations that differentiate the two parasites [95, 96]. The description of

new Apicomplexa species based on genetic information alone is controversial [97, 98] but not

unprecedented [99], and it has been proposed that species identification based only on DNA

characterization would be more efficient, even though inclusion of other data, such as host

and geography, when available, is advisable [100]. Given the mounting evidence of genomic,

immunological and epidemiological differences between cattle- and buffalo-derived T. parva,

we posit that it is appropriate to return to the original classification of these two parasite popu-

lations as separate subspecies [13, 101], or perhaps even discuss their classification as separate

species. Future studies, based on a representative sample of both cattle and buffalo parasites,

will facilitate a comprehensive characterization of the differences between them and the identi-

fication of mutations that resulted in novel host-parasite interactions, facilitating adaptation to

new mammalian hosts, in the genus Bos [102].

Vaccination remains the most cost-effective tool for prevention of livestock infections and

concomitant cattle morbidity and mortality. Apicomplexan parasites of livestock are often

closely related to human-infective species with respect to the protective immune responses

induced, and therefore represent potential models for evaluation of responses to human infec-

tion [103]. However, while there are several veterinary vaccines against protozoa that have

been manufactured by veterinary authorities in collaboration with the private sector for

decades, there is still no fully efficacious vaccine against any protozoan parasites that infect

humans [104]. A primary impediment to the development of anti-parasitic vaccines is the high

degree of antigenic polymorphism, which results in allele- or genotype-specific efficacy, mak-

ing the collection of this information critical [105, 106]. Genotype-specificity may also impact

the efficacy of vaccines against T. parva [107], and resulted in the inclusion of three genotypes

in the Muguga Cocktail vaccine [102] which, despite broadly effective against cattle T. parva,

still does not protect against parasites circulating in buffalo [20]. As a result, it has been pro-

posed that new vaccines should comprise a mixture of antigenically divergent clones [74], the

characterization of which our capture approach makes feasible as a high-throughput process.

A reference genome for a buffalo-derived T. parva parasite will enable a more accurate charac-

terization of genetic variation among buffalo-derived strains, in particular in genomic regions

that are unique to buffalo parasites or highly divergent from cattle-derived strains. The charac-

terization of multiple buffalo-derived genotypes will reveal the proportion of the genome that

is variable among these strains and differences that are fixed relative to cattle-derived geno-

types, These data can be used to inform a decision on whether a single vaccine that protects

both against cattle and buffalo T. parva sub-populations is feasible. This is particularly perti-

nent given the high level of genetic differentiation we report between buffalo-derived T. parva
and the reference, cattle-derived, Muguga genome.
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The problem is particularly acute when the pathogen parasitizes nucleated host cells, result-

ing in an extremely small ratio of host-to-parasite DNA [36]. This presents a substantial obsta-

cle to whole genome characterization for species in the genus Theileria, as well as for bacterial

pathogens such as Chlamydia and Rickettsia [36, 108, 109]. The approach described here offers

a major advance in the capacity to characterize genetic diversity of intracellular protozoan par-

asite populations, which potentially can enhance informed development of more broadly effi-

cacious vaccines, including protective vaccines against buffalo-derived T. parva. To achieve

the widest protection, any future development of subunit vaccines against T. parva should con-

sider the inclusion of orthologs from buffalo-derived strains.

In conclusion, the potential applications of the capture approach on T. parva samples are

many and will be valuable in answering translational questions, including improving vaccine

design and understanding breakthrough infection by buffalo-derived genotypes in vaccinated

cattle [20], as well as understanding the impact of parasite genetic variation on the efficacy of

potential drugs. Characterization of bovine-infecting genotypes can also be used to understand

the role of heterologous reactivity, or infection with multiple Theileria species, that has been

implicated as a determinant of the impact of disease control measures at the population level

[110]. Finally, the availability of multiple genome sequences may shed light on the mechanism

and frequency of host switching from buffalo to cattle that led to the establishment of the two

distinct parasite populations described in this study.
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