1,412 research outputs found

    Virtual acoustics displays

    Get PDF
    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events

    A Look to Future Directions in Gene Therapy Research for Monogenic Diseases

    Get PDF
    The concept of gene therapy has long appealed to biomedical researchers and clinicians because it promised to treat certain diseases at their origins. In the last several years, there have been several trials in which patients have benefited from gene therapy protocols. This progress, however, has revealed important problems, including the problem of insertional oncogenesis. In this review, which focuses on monogenic diseases, we discuss the problem of insertional oncogenesis and identify areas for future research, such as developing more quantitative assays for risk and efficacy, and ways of minimizing the genotoxic effects of gene therapy protocols, which will be important if gene therapy is to fulfill its conceptual promise

    Limiting the Duration of Medication Assisted Treatment for Opioid Addiction: Will New State Policies Help or Hurt?

    Get PDF
    This presentation details the impact of state Medicaid programs placing lifetime limits on buprenorphine therapy for individuals with opioid dependence. The research reveals that setting limits does not save money or help the patient

    Determination of Inter-Phase Line Tension in Langmuir Films

    Get PDF
    A Langmuir film is a molecularly thin film on the surface of a fluid; we study the evolution of a Langmuir film with two co-existing fluid phases driven by an inter-phase line tension and damped by the viscous drag of the underlying subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a transient strain and images the response. When a compact domain is stretched by the imposed strain, it first assumes a bola shape with two tear-drop shaped reservoirs connected by a thin tether which then slowly relaxes to a circular domain which minimizes the interfacial energy of the system. We process the digital images of the experiment to extract the domain shapes. We then use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions first verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%. We find line tensions in the range of 200-600 pN; we hypothesize that this variation is due to differences in the layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie

    MISSION Diversion & Recovery for Traumatized Veterans (MISSION DIRECT VET): Early Findings and Lessons Learned

    Get PDF
    MISSION DIRECT VET is a SAMHSA- funded, court based diversion program targeting veterans in Massachusetts with trauma-related mental health and substance use problems. MISSION-DIRECT VET seeks to: Reduce criminal justice involvement Treat mental health, substance abuse and other trauma related symptoms Use a systematic wrap-around model Provide care coordination, peer support and trauma informed services Develop interagency partnerships to serve veterans with co-occurring disorder

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    Implementation in rehabilitation: a roadmap for practitioners and researchers

    Get PDF
    PURPOSE: Despite growth in rehabilitation research, implementing research findings into rehabilitation practice has been slow. This creates inequities for patients and is an ethical issue. However, methods to investigate and facilitate evidence implementation are being developed. This paper aims to make these methods relevant and accessible for rehabilitation researchers and practitioners.\ud METHODS: Rehabilitation practice is varied and complex and occurs within multilevel healthcare systems. Using a "road map" analogy, we describe how implementation concepts and theories can inform implementation strategies in rehabilitation. The roadmap involves a staged journey that considers: the nature of evidence; context for implementation; navigation tools for implementation; strategies to facilitate implementation; evaluation of implementation outcomes; and sustainability of implementation. We have developed a model to illustrate the journey, and four case studies exemplify implementation stages in rehabilitation settings. RESULTS AND CONCLUSIONS: Effective implementation strategies for the complex world of rehabilitation are urgently required. The journey we describe unpacks that complexity to provide a template for effective implementation, to facilitate translation of the growing evidence base in rehabilitation into improved patient outcomes. It emphasizes the importance of understanding context and application of relevant theory, and highlights areas which should be targeted in new implementation research in rehabilitation. Implications for rehabilitation Effective implementation of research evidence into rehabilitation practice has many interconnected steps and a roadmap analogy is helpful in defining them. Understanding context for implementation is critically important and using theory can facilitate development of understanding. Research methods for implementation in rehabilitation should be carefully selected and outcomes should evaluate implementation success as well as clinical change. Sustainability requires regular revisiting of the interconnected steps

    Quantitative signal properties from standardized MRIs correlate with multiple sclerosis disability

    Get PDF
    OBJECTIVE: To enable use of clinical magnetic resonance images (MRIs) to quantify abnormalities in normal appearing (NA) white matter (WM) and gray matter (GM) in multiple sclerosis (MS) and to determine associations with MS-related disability. Identification of these abnormalities heretofore has required specialized scans not routinely available in clinical practice. METHODS: We developed an analytic technique which normalizes image intensities based on an intensity atlas for quantification of WM and GM abnormalities in standardized MRIs obtained with clinical sequences. Gaussian mixture modeling is applied to summarize image intensity distributions from T1-weighted and 3D-FLAIR (T2-weighted) images from 5010 participants enrolled in a multinational database of MS patients which collected imaging, neuroperformance and disability measures. RESULTS: Intensity distribution metrics distinguished MS patients from control participants based on normalized non-lesional signal differences. This analysis revealed non-lesional differences between relapsing MS versus progressive MS subtypes. Further, the correlation between our non-lesional measures and disability was approximately three times greater than that between total lesion volume and disability, measured using the patient derived disease steps. Multivariate modeling revealed that measures of extra-lesional tissue integrity and atrophy contribute uniquely, and approximately equally, to the prediction of MS-related disability. INTERPRETATION: These results support the notion that non-lesional abnormalities correlate more strongly with MS-related disability than lesion burden and provide new insight into the basis of abnormalities in NA WM. Non-lesional abnormalities distinguish relapsing from progressive MS but do not distinguish between progressive subtypes suggesting a common progressive pathophysiology. Image intensity parameters and existing biomarkers each independently correlate with MS-related disability
    corecore