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Abstract

Objective: To enable use of clinical magnetic resonance images (MRIs) to

quantify abnormalities in normal appearing (NA) white matter (WM) and gray

matter (GM) in multiple sclerosis (MS) and to determine associations with

MS-related disability. Identification of these abnormalities heretofore has

required specialized scans not routinely available in clinical practice. Methods:

We developed an analytic technique which normalizes image intensities based

on an intensity atlas for quantification of WM and GM abnormalities in stan-

dardized MRIs obtained with clinical sequences. Gaussian mixture modeling is

applied to summarize image intensity distributions from T1-weighted and 3D-

FLAIR (T2-weighted) images from 5010 participants enrolled in a multinational

database of MS patients which collected imaging, neuroperformance and dis-

ability measures. Results: Intensity distribution metrics distinguished MS

patients from control participants based on normalized non-lesional signal dif-

ferences. This analysis revealed non-lesional differences between relapsing MS

versus progressive MS subtypes. Further, the correlation between our non-

lesional measures and disability was approximately three times greater than that

between total lesion volume and disability, measured using the patient derived

disease steps. Multivariate modeling revealed that measures of extra-lesional tis-

sue integrity and atrophy contribute uniquely, and approximately equally, to

the prediction of MS-related disability. Interpretation: These results support

the notion that non-lesional abnormalities correlate more strongly with MS-

related disability than lesion burden and provide new insight into the basis of

abnormalities in NA WM. Non-lesional abnormalities distinguish relapsing

from progressive MS but do not distinguish between progressive subtypes sug-

gesting a common progressive pathophysiology. Image intensity parameters and

existing biomarkers each independently correlate with MS-related disability.

Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating

disease1 associated with neurodegeneration.2 MS-related dis-

ability is prevalent and can be substantial.3 The diagnostic

hallmark of MS is focal demyelinating lesions4 that appear as

white matter (WM) hyperintensities on T2-weighted (or

FLAIR) magnetic resonance images (MRIs).5–7 WM lesions

(WMLs) have prognostic value in individual patients.8 How-

ever, lesion burden correlates poorly with clinical disability.9

Non-lesional abnormalities are also of critical importance in

MS, yet are difficult to discern on routine MRIs.10
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MS leads to histopathological abnormalities and micro-

glial activation in WM that are not evident on routine

clinical imaging.11 These abnormalities partially predict

clinical disability.12 Gray matter (GM) pathology in both

cortical and subcortical structures often begins early in

MS13,14 and also partially correlates with disability.15

However, neither normal-appearing WM (NAWM) nor

GM pathology is readily detectable on routine clinical

imaging. Atrophy, including thalamic atrophy, strongly

predicts future disability.16 However, atrophy is a down-

stream manifestation of neurodegeneration that reflects

the sum of multiple pathologic processes. Specialized

techniques such as magnetization transfer imaging,17 dif-

fusion tractography,18 and quantitative relaxometry12 are

useful in the study of MS, but these techniques require

lengthy MRI acquisitions and specialized analyses. Conse-

quently, assessing the contribution of non-lesional pathol-

ogy to disability has previously been possible only in

research applications.

Thus, development of non-lesional imaging biomarkers

is of critical importance for assessing disease severity and

improving our understanding of the pathological basis of

disability. We developed a novel approach based on mul-

timodal voxel intensity normalization that can be applied

to standard clinical MRI datasets. This approach enables

measurement of abnormalities in non-lesional tissue that

are theoretically informationally equivalent to quantitative

relaxometry.19 We evaluated this technique in a large,

previously collected dataset of T1-weighted and T2-

weighted FLAIR images with regard to differentiating

individuals with MS from non-MS controls, distinguish-

ing between relapsing versus progressive MS subtypes,

and determining correlations with disability measures. We

hypothesized that T1-weighted and T2-weighted images,

following appropriate transform, would contain quantita-

tive measures of tissue integrity allowing for the identifi-

cation of abnormal non-lesional tissue. We tested this

hypothesis in a large observational dataset and assessed

the extent to which the information provided by our

novel analysis methodology is complimentary to conven-

tional biomarkers of MS pathology (i.e., WML burden

and atrophy).

Methods

Standard protocol and patient enrollment

Data were obtained from the MS PATHS network, com-

prising 10 sites in the United States and Europe. The MS

PATHS database contains clinical and imaging data col-

lected from a large, heterogenous MS population as part

of routine patient care. MS PATHS participants agree to

share pseudoanonymized data with the research sponsor

and the network investigators under the auspices of indi-

vidual Institutional Review Boards after providing written

informed consent. The MS PATHS database includes clin-

ical performance measures and 3D T1-weighted and 3D

FLAIR images (both 1-mm isotropic voxels) acquired on

3T Siemens scanners using a standardized imaging proto-

col. After local approval by the Institutional Review Board

at Washington University in St. Louis, data used in the

present analyses were drawn from Data Cut 6 (Down-

loaded 12/5/2018).

MS PATHS inclusion and exclusion criteria

Inclusion criteria for all MS PATHS participants included

clinically confirmed MS and ability to provide informed

consent. Additional criteria applied in the present analysis

are detailed below.

Clinical characterization in MS PATHS

Clinical measurements closest to the imaging session were

used. Many (1206) were performed the same day. In all

cases, <180 days separated sessions (mean 43 days, st. dev

50 days).

MS subtype

Patients characterized themselves as having one of the fol-

lowing types of MS: relapsing–remitting (RR), secondary

progressive (SP), primary progressive (PP), or progressive

relapsing (PR). The nomenclature regarding subtypes is

based on the original MS PATHS study design. All four

subtypes were initially analyzed separately, but statistical

analysis revealed that progressive subtypes were indistin-

guishable. Accordingly, subsequent analyses focused on

relapsing remitting versus progressive subtypes.

Patient determined disease steps

The patient determined disease steps (PDDS) is a self-re-

ported disability score with a strong correlation

(r = 0.78) to the Expanded Disability Status Scale.20

Patients rate their disability from 0 to 8, with 0 corre-

sponding to normal, (1) – mild disability, (2) – moderate

disability, (3) – gait disability, (4) – early use of a cane,

(5) – late use of a cane, (6) – bilateral support, (7) –
wheelchair or scooter dependent, and (8) – bedridden.

Objective performance testing

Performance tests were administered during clinical visits

on an iPad using the Multiple Sclerosis Performance Test

(MSPT).21 Measures were designed to simulate
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components of the multiple sclerosis functional composite

and include the processing speed test, a digital version of

the symbol digit modalities test22; the manual dexterity

test, simulating the 9-hole peg test23; and the walking

speed test, a timed 25-foot walk.24 Results from the test-

ing session closest to the MRI date were used in the pre-

sent analysis.

Quality of life evaluation

Patients ranked their subjective symptoms using the com-

puter adapted version of the Neuro-QoL.25 This instru-

ment assesses 12 domains of health-related quality of life

such as cognitive function and upper extremity use.

Results from the questionnaire closest to the scanning ses-

sion were used.

Healthy controls data collection

Healthy control data were collected at MS PATHS institu-

tions as part of an ongoing concurrent substudy. Subjects

aged 21–60 were recruited to be age, gender, and race

matched to the clinical MS PATHS population. Exclusion

criteria included comorbid neurological conditions (e.g.,

stroke, epilepsy, and Alzheimer’s disease), migraine

requiring medication, autoimmune disease, pregnancy, or

history of human immunodeficiency virus. Healthy con-

trol subjects underwent the same data collection proce-

dures (MSPT and MRI) as the MS patients.

Image processing and analysis

Basic image processing steps are described here; more

detail is available in the Supplemental Material. T1 MP-

RAGE and 3D FLAIR (1-mm3 voxels) underwent affine

alignment, brain extraction, and bias field correction.26

The fundamental principle underlying the present anal-

yses is standardization of bivariate intensity (T1w ×
FLAIR) histogram shape to match normative data. This

is a statistical approach to analysis of image intensity dis-

tributions. Differences in alignment owing to atrophy do

not affect this analysis. Normative data from 101 age-

and sex-matched controls imaged using identical proce-

dures were generated. Bivariate histograms were created

representing T1w/FLAIR voxel intensities on the horizon-

tal/vertical axes, respectively. Histogram peaks occurred at

specific loci in intensity space corresponding to distinct

tissue classes (GM, WM, CSF; Fig. 1). Individual partici-

pant histograms exhibited grossly similar shapes in

healthy controls and MS patients but subtly varied in

scale and skew across individuals (dashed lines in Fig. 1).

Intensity normalization of all participants (n = 5038)

was achieved by affine registration of individual bivariate

histograms to the reference histogram. This normalization

facilitates tissue classification and comparison. Figure 1

illustrates bivariate histograms in two example partici-

pants (1 control, 1 MS patient) before and after intensity

normalization. Histogram alignment error in each indi-

vidual was compared to a fixed criterion determined by

visual inspection of a representative sample (Figure S1).

Individuals with histogram alignment error above this

threshold (n = 28, 0.6%) were excluded. Histogram nor-

malization parameters obtained in each participant were

applied voxelwise to the T1w and FLAIR data, thereby

generating images whose bivariate histograms closely

approximated the normative reference.

Intensity normalization generated T1w and FLAIR

images in which tissue classes (CSF, WM, GM, lesion)

were represented as partially overlapping distributions

about centroids in a bivariate intensity space. Tissue seg-

mentation was achieved by implementing a procedure

similar to k-means clustering (described in the Supple-

mental Material) to compute voxelwise tissue class assign-

ments (Figure S2). Each voxel was classified as either GM,

WM, CSF, or WML. A conservative methodology was

adopted to identify unconfounded NA voxels, with

ambiguous or borderline voxels classified as lesion for this

analysis. A separate procedure was used to quantify GM

and WM volumes (see Brain atrophy measures below;

“MSPie” and Figure S2 and S3).

In principle, statistical measures could be extracted

directly from the bivariate histograms. However, MS

pathology is commonly described in terms of T1w and

FLAIR images. Therefore, to preserve the interpretability of

the present findings, we adopted a univariate approach

whereby T1 and FLAIR intensity histograms were modeled

separately. The normalized data were split into two univari-

ate histograms representing normalized T1w and FLAIR

image intensity distributions. These univariate, normalized

histograms were subsequently subjected to comparisons of

interest, for example, MS patients versus controls. Group

comparisons were computed by analysis of normalized,

univariate T1w and FLAIR intensity distributions within

tissue classes determined by Gaussian mixture modeling

(GMM). GMMs applied to T1w and FLAIR intensity distri-

butions provide a signal intensity mean (µ) and standard

deviation (σ) for each tissue class, CSF, GM, WM, and

lesion (Fig. 2A and B). These parameters (µ, σ) from GM

and WM derived from the T1w and FLAIR data were ana-

lyzed further. GMM fitting was carried out twice, once with

lesions included and again with lesions excluded.

Brain atrophy measures

MS PATHS Image Evaluation (MSPie) automatically

segments GM and WM structures and delivers estimates
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of brain parenchymal fraction (BPF), WM fraction

(WMF), GM fraction (GMF), and thalamic volume.27

These metrics, included in the MS PATHS repository,

were used to estimate atrophy. Of note, lesion masks

derived from MSPie and the present lesion score

approach are strongly similar (Supplemental Results,

Figures S2 and S3).

Statistical procedures

Evaluating differences in mean GMM parameters
between Controls and MS patients

The first investigated question was whether GMM param-

eters differ between MS patients and controls; the second

question was whether GMM parameters differ among MS

Figure 1. Demonstration of intensity alignment in control and MS patients. (A) Univariate histogram for a randomly selected control participant

demonstrates T1w intensity in blue, with highest voxel counts for intensity at approximately 200 (for CSF), 600 (for gray matter), and 1000 (for

white matter). Flair intensity in red indicates highest voxel numbers were at approximately 200 (for CSF), 700 (for white matter), and 1100 (for

gray matter). (B) The same control, bivariate, voxel-wise intensity histogram (higher voxel counts are bright) demonstrates a clustering of voxels at

T1w intensity of approximately 600 and FLAIR intensity of approximately 1100 (gray matter, left arrowhead), and another clustering of voxels at

FLAIR intensity of approximately 700 and T1w intensity of approximately 1000 (white matter, right arrowhead). (C and D) Histograms from a

randomly selected RRMS patient demonstrate abnormalities in location and distribution of peaks. Alterations in location and distribution of T1w

and FLAIR in the bivariate plot (in D) are not just due to the disease but also due to lack of normalized signal intensities owing to uninteresting

scan parameters. In (A and C), the dashed lines indicate the nonalignment of the peak loci in the T1w distribution (blue line). Based upon the

normal reference created from 101 healthy controls (E and F), intensity alignment was affine transformed for the control participant (G and H),

and the MS patient (I and J). The MS patient marginal histogram now demonstrates better normalization of T1w intensity (blue line) and

broadening of the FLAIR peak (red line) which corresponds to T2-weighted abnormalities in MS.
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subtypes. ANOVA models were fit with group (control,

RRMS, SPMS, PPMS, PRMS) as factor. Each of 8 GMM

parameters was fit separately. Thus, the significance level

was set as P < 0.05/8 = 0.00625. In cases of significant

ANOVA models, post hoc pairwise contrasts were

extracted to determine between which groups there were

significant differences.

Evaluating the relationship between biomarkers
and disability

We next sought to quantify the relationships between

biomarkers (e.g., GMM parameters, lesion volume, and

atrophy) and disability as measured by the PDDS.

Biomarkers were Z scored, thereby facilitating direct

comparison of regression β values. Each biomarker was

separately fit in a linear regression model with intercept

and PDDS as modeled factors. The β (slope) values

were of key interest as they directly reflect the strength

of the statistical relationship between biomarkers and

PDDS.

Identification of unique contributors to disability

The preceding analyses established a relationship between

PDDS and biomarkers of interest. A LASSO regression

model was fit to isolate variables uniquely contributing to

PDDS. LASSO regression eliminates variables contributing

redundant information from the model.28 To verify the

validity of the fit, a hold-out analysis was performed

Figure 2. Histogram parameters differentiate MS patients from controls. The top panels (A, B) display simulated data to demonstrate the

application of Gaussian mixture models (GMMs) to univariate histograms. Solid blue and red lines correspond to the hypothetically observed T1w

and FLAIR intensity histograms, respectively. GMM attempt to model these observed distributions as a sum of Gaussians, these Gaussians are

indicated by dashed lines. Each Gaussian is described by a mean (µ) and standard deviation (σ). These parameters are calculated for each

individual participant in WM and GM on the T1w and FLAIR image. The Gaussian corresponding to the CSF is not analyzed. The mean (standard

error) of each parameter across participants is shown in the bottom panels (C–J). Dark gray bars correspond to estimates calculated across the

entire brain mask; light gray bars correspond to estimates calculated across the brain mask with discrete WM lesions excluded. The principle

impact of lesion exclusion on GMM parameters was to reduce within-tissue class variability (σ). As a rule, MS (all subtypes) are associated with

increase σ in all measures indicating increased signal variability (wider histograms). For µ parameters, the direction varies. T1w WM and FLAIR WM

and GM appeared darker in MS patients and T1w GM appeared brighter in MS patients.
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wherein the model trained on 90% of available data was

applied to the previously unseen 10%.

Data availability statement

MS PATHS data are currently accessible to Biogen or par-

ticipating healthcare institutions in the MS PATHS pro-

gram. Analysis code will be made available to qualified

researchers upon request.

Results

Participant demographics

Complete datasets were acquired in 5038 participants (101

healthy controls and 4937 MS patients). Of these, 5010,

including all 101 healthy controls, passed quality control

procedures based on alignment of the bivariate intensity his-

togram. MS patients comprised 68% RRMS, 18% SPMS,

6.5% PPMS, and 8% PRMS groups. Patients with RR sub-

type were more likely to be younger, female, and less dis-

abled compared to progressive subtypes (Table 1). Rates of

disease modifying therapy were similar across subtypes.

Gaussian mixture models measure
differences between MS patients and
controls

Figure 2C–J shows μ and σ corresponding to GM and

WM, in normalized T1w and FLAIR data, in healthy con-

trols, RRMS, SPMS, PPMS, and PRMS. ANOVA found

significant MS versus control differences in all but four

out of 16 combinations of image type × measure, with or

without lesions included (dark or light bars in Fig. 2;

Table S1). In particular, T1w mean WM intensity (μ) was
significantly lower in all MS subtypes (Fig. 2C) compared

to controls, indicating diffuse, WM changes in MS. Addi-

tionally, T1w WM σ was larger (wider distribution) in all

MS subtypes compared to controls (Fig. 2G), indicating

increased heterogeneity of T1w WM signal. Similarly,

FLAIR WM σ was wider in all MS subtypes compared to

controls (Fig. 2I). These outcomes were the same whether

or not lesions were included in the WM measure, indicat-

ing that NAWM is abnormally heterogenous in MS. In

the case of controls, differences owing to the inclusion or

exclusion of lesions are due to the presences of nonspeci-

fic WM hyperintensities classified as lesions likely owing

to small vessel disease or a similar process. The FLAIR

GM μ parameter performed best for discriminating con-

trol versus MS (Fig. 2F).

Figure 3 shows results obtained by post-hoc extraction

of comparisons from the ANOVA model, with lesions

excluded; μ and σ comparisons are listed above and below

the diagonal, respectively. The most significant differences

were between healthy controls and all MS subtypes (first

row or column of Fig. 3); the next most significant were

between RRMS and progressive MS subtypes (second row

or column of Fig. 3). Almost no significant differences were

found between the three progressive MS subtypes (shaded

area of each matrix). Thus, GMM analysis of normalized

intensity distributions distinguished patients with MS from

healthy controls and RR MS from progressive MS but did

not distinguish among progressive MS subtypes.

Differences in mean values are difficult to generalize to

the individual subject. We investigated the sensitivity and

specificity of the GMM parameters for determining two

comparisons: (1) control versus MS and (2) RRMS versus

progressive subtypes. Comparisons within progressive sub-

types were excluded on the basis of no mean differences

being found in the above analysis (Fig. 3). For each GMM

parameter and comparison, we calculate the ROC AUC

parameter, sensitivity, and specificity (Table 2). Overall, the

GMM parameters with the most significant differences in

mean value also had the most discriminative value as mea-

sured by the ROC. As regards discriminating controls versus

MS patients, FLAIR WM σ had the largest AUC (0.84). The

AUC of FLAIR WM µ was only 0.55 indicating that this

parameter was minimally discriminative of MS versus con-

trols. The biological interpretation of GMMparameters with

near-chance AUC is uncertain.

Table 1. Participant demographics.

Controls RRMS SPMS PPMS PRMS

N 101 3340 877 321 399

N excluded 0 17 8 2 1

Gender, %F 75% 75% 73% 64% 64%

Age in years (SD) 41.1 (11.8) 45.2 (11.9) 49.8 (11.1) 50.3 (12.5) 47.0 (12.4)

PDDS (SD) N/A 1.13 (1.53) 3.54 (1.96) 3.36 (2.29) 2.97 (2.27)

Age at diagnosis (SD) N/A 34.0 (10.4) 34.8 (11.0) 39.1 (12.3) 33.1 (11.3)

On disease modifying therapy (%) N/A 76% 69% 77% 67%

Note. Demographic information for MS PATHS participants and healthy controls. Mean (standard deviation) of selected demographic variables by

group and MS subtype. PDDS, patient determined disease steps.
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Relations between lesion-burden and
atrophy biomarkers and disability

Figure 4 relates existing lesion-based biomarkers and

brain volume-based biomarkers to PDDS evaluated over

all MS subtypes. The Z score (across the entire cohort) of

each biomarker was entered into regression analysis with

PDDS as the independent variable. The obtained regres-

sion coefficients (β) quantitate magnitude of the imaging

biomarker relation to disability and allow comparison

between alternative biomarkers. Among the six evaluated

imaging biomarkers, lesion volume (Fig. 4A) exhibited

the weakest relation to PDDS. BPF (Fig. 4C), followed by

GMF (Fig. 4E), thalamic volume (Fig. 4D), and WMF

(Fig. 4F), all out-performed lesion volume.

Relations between Gaussian mixture model
measures and disability

Figure 5 relates GMM measures in GM and WM to PDDS

in all MS subtypes (with discrete lesions excluded),

displayed as in Figure 4. Several GMM measures exhibited

close associations with PDDS. FLAIR GM μ (Fig. 5D) and

FLAIR WM σ (Fig. 5G) yielded regression values

(β = −0.13 and 0.12, respectively) that were threefold to

fourfold greater than the regression value for lesion volume

(Fig. 4A) and approximately equivalent to BPF (Fig. 4C).

Results describing the relationship between GMMmeasures

and PDDS separated by MS subtype are shown in Table S2

and discussed in Supplemental Results. The relationships

between GMM measures and PDDS were predominantly

constant across MS subtypes, but when differences emerged,

which were small, the relationship was strongest in RRMS.

The PDDS corresponds closely to the EDSS but remains a

subjective measure. Accordingly, to enhance the reliability

and interpretability of the PDDS results, we evaluated these

imaging biomarkers in relation to the neuroperformance

tests (NPT) within the MSPT and Neuro-QoL. Concordant

results were obtained with the NPT and Neuro-QoL. The

NPT and Neuro-QoL have three and 12 measures, respec-

tively. Each was reduced to a single composite score using

principal component (PC) analysis (individual measures are

Figure 3. Parametric differences separate MS from controls and relapsing MS from progressive MS. Matrices show the results of post hoc

contrasts extracted from the models shown in Table 3. Pairwise comparisons were made between each of the five groups (controls, RRMS, SPMS,

PPMS, PRMS) for each parameter. Contrasts relating to the µ parameter are shown above the diagonal and contrasts relating to the σ parameter

are shown below the diagonal. The logarithmic magnitude of the P value for the corresponding contrast is represented by number of “*” with
+P < 0.05; *P < 10−2; **P < 10−3; ***P < 10−4; ****P < 10−5. Empty boxes indicate nonsignificant contrasts. The most significant differences

were between controls and all MS subtypes (first row or column) and between RRMS and progressive MS subtypes (second row or column),

whereas differences among the three progressive subtypes were unapparent.

Table 2. GMM parameter ROC AUC.

T1 WM µ T1 GM µ T1 WM σ T1 GM σ FL WM µ FL GM µ FL WM σ FL GM σ

Control versus MS

AUC 0.77 0.72 0.66 0.65 0.55 0.82 0.84 0.54

Sensitivity 0,45 0.56 0.68 0.40 0.90 0.76 0.77 0.28

Specificity 0.83 0.77 0.60 0.82 0.13 0.77 0.72 0.82

RRMS versus progressive subtypes

AUC 0.58 0.55 0.61 0.58 0.53 0.63 0.69 0.51

Sensitivity 0.65 0.31 0.63 0.52 0.66 0.72 0.55 0.74

Specificity 0.49 0.77 0.52 0.62 0.42 0.49 0.66 0.28

Note. ROC AUC, sensitivity, and specificity for the discrimination of controls versus MS patients and RRMS versus progressive subtypes based on the eight

GMM parameters. GMM, Gaussian mixture modeling; MS, multiple sclerosis.
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listed in Table S3). The first PC explained 82% and 60% of

the variance of NPT and Neuro-QoL, respectively. As with

PDDS, FLAIR GM μ and FLAIR WM σ exhibited the stron-

gest relationships with NPT and Neuro-QoL (Table 3).

Moreover, the t scores for FLAIR GM μ and FLAIR WM σ
associations with NPT and Neuro-QoL were approximately

five times larger than the t score relating WML volume and

NPT and Neuro-QoL.WML-based measures showed no sig-

nificant relation to NPT or Neuro-QoL.

Accounting for both brain volume and
Gaussian mixture model parameters
improves correlation with disability

A subset of GMM parameters as well as volume-based mea-

sures was strongly correlated with PDDS. Specifically, this

was true of BPF (β = −0.16), FLAIR GM μ (β = −0.13),
and FLAIR WM σ (β = +0.12). To address the question of

whether these parameters provide unique versus redundant

information, we performed LASSO regression,2928 which

assigns weights to factors contributing to an outcome mea-

sure (i.e., PDDS) under a constraint (formally, L1-penalized

regression) that eliminates weak or, critically, redundant

contributions. An important consideration of LASSO

regression is the biological interpretability of the resulting

model. Inclusion of a variable in the model indicates that,

compared to other included variables, a given variable con-

tains additional explanatory power. Exclusion of a variable

does not necessarily imply that it lacks predictive power,

only that the added predictive power is less than some tun-

ing penalty. Importantly, given two equally predictive and

highly correlated variables subject to different sampling

Figure 4. Relationship between established MS imaging biomarkers and MS disability. The relationship between imaging measures of MS

patients and the patient-determined disease steps (PDDS) score are shown graphically, along with linear regression β values (shaded areas

correspond to 1 SD around the mean predicted value). Imaging measures were Z transformed such that different metrics are on the same scale,

making β values comparable across measures. The first column (A, B) shows the relationship with two measures of WM lesion burden. WM lesion

volume is the sum of voxels identified as lesions. WM lesion intensity is WM lesion volume weighted by the lesion intensity (~uvl ¼1=nL∑v∈Lu
v
l ,

where ul is the lesion score and L is the set of voxels within a lesion). The remaining panels (C–F) show the relationship between PDDS and brain

parenchymal fraction (BPF), thalamic volume, WM fraction (WMF), and GM fraction (GMF). Of note, in all cases the lesion based measures are

outperformed by the brain volume based measures. Asterisks indicate P values. *P < 10−2; **P < 10−3; ***P < 10−4; ****P < 10−5.
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error, LASSO will include the variable with less sampling

error. The LASSO model was computed using 90% of ran-

domly selected participants and tested in the remaining

10%. Two lesion metrics (Fig. 4A and B), 4 brain volume

metrics (Fig. 4C–F), and eight GMM metrics (Fig. 5) were

included in the model, which identified two significant pre-

dictors of PDDS: BPF (β = −0.26) and FLAIR GM μ
(β = −0.12). All other variables were eliminated. This result

indicates that brain volume and FLAIR GM μ independently
contribute to correlations with disability. Applying the opti-

mized model to the 10% held-out data revealed a significant

correlation between predicted and measured PDDS

(R2 = 0.36, P < 10−16).

Discussion

MRIs are performed routinely in MS patients. We

hypothesized that, by utilizing T1w and FLAIR intensities,

additional impactful information could be obtained from

routine clinical MRIs. We developed a technique to stan-

dardize T1w and FLAIR intensity histograms derived

from images obtained with clinically available MRI

sequences. This technique was applied to data from previ-

ously acquired datasets from over 5000 MS patients and

identifying relationships with clinical disability. GMM of

the standardized histograms yielded measures that sepa-

rated MS patients from healthy controls and distinguished

between relapsing MS versus progressive MS. The two

GMM measures most correlated with disability measures

were GM mean intensity (μ) and non-lesional WM inten-

sity variability (σ) in FLAIR images. Since WM σ was

evaluated outside of discrete lesions, this measure pertains

to NAWM. LASSO regression demonstrated that GMM

analysis of standardized intensity histograms contributed

information relating to disability that was independent of

lesion burden and atrophy measures. Specifically, LASSO

Figure 5. Abnormalities in white matter and gray matter intensity and variability in non-lesional GM and WM correlate with MS disability. The

relationship between imaging measures of MS patients and the patient-determined disease steps (PDDS) score are shown graphically, along with

linear regression β values. Imaging measures were Z transformed such that different metrics are on the same scale, making β values comparable

across measures. The panels demonstrate the relationships between PDDS and intensity and variability parameter measures of non-lesional GM

and WM. Asterisks indicate P values. *P < 10−2; **P < 10−3; ***P < 10−4; ****P < 10−5.
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identified FLAIR GM μ which may reflect sensitivity to

cortical lesions not readily appreciable on visual inspec-

tion of the images. This novel analysis technique provides

quantitative insights into non-lesional WM pathology in

MS and its relation to disability. Moreover, this powerful

technique provides a practical method that can be used to

derive quantitative information from clinical brain

images, including those acquired previously such as MRIs

done in prior clinical trials.

T1 and T2 are intrinsic physical properties of neural

tissue29 that depend on cellular composition.30,31 Absolute

measurement of T1 and T2 can be obtained using multi-

echo MRI sequences.12 Such quantitative measures can

serve as biomarkers of disease.32 MS-related changes in

T1 and T2 are well documented in both the WM and

GM, within33 and outside34 discrete lesions. For example,

T2 is prolonged in MS NAWM.34 T1 and T2 are propor-

tionally reflected in T1w and T2w (FLAIR) images in a

manner that depends on sequence parameters (i.e., TR,

TE, presence of suppression pulses, etc.). Variations in

these parameters among clinical scans preclude direct

recovery of absolute T1 and T2 from T1w and T2w

images. The present histogram normalization technique

overcomes this barrier by representing T1w and T2w data

in a standard bivariate intensity space. Standardized

intensities are informationally equivalent to absolutely

measured T1 and T219 assuming that T1w and T2w

images encode a linear combination of T1 and T2. In

practice, this assumption is only approximate as

reconstructed image intensities depend on T1 and T2

nonlinearly.35 Nevertheless, we have demonstrated the

utility of our approach using T1w and FLAIR imaging

data. The fundamentals underlying this approach easily

accommodate additional imaging contrasts (e.g., suscepti-

bility-weighted images).

The present results using our novel analysis method are

concordant with results obtained using quantitative relax-

ometry but without the technical challenges of the latter

procedure. Our results recapitulate that WM T2 (FLAIR)

heterogeneity is increased in MS compared to controls36

and in progressive MS compared to relapsing MS.37 Thus,

results derived from the present method parallel results

obtained with quantitative T1 or T2 imaging,38 while

being accessible in clinically acquired data standardized

imaging data.

The present findings provide several insights. Intensity-

based measures derived from the GMM approach sepa-

rated RRMS from progressive disease but did not distin-

guish between progressive disease subtypes (PPMS vs.

SPMS vs. PRMS). This result is consistent with the con-

cept that all progressive subtypes have similar underlying

tissue damage, likely representing the same underling

pathologic process. Second, we compared the GMM

intensity-based method to lesion volume metrics and esti-

mates of atrophy using BPF, WMF, GMF, and thalamic

volume, head to head. The present intensity-based mea-

sures and volume-based measures were independently

correlated with MS-related disability. Hence, considera-

tion of both could enhance tracking of disease dynamics.

Third, the variability in FLAIR signal intensity in NAWM

was strongly correlated with disability. T2 (FLAIR) corre-

lates with myelin content, axon count and other histologi-

cal features in post-mortem MS tissue.39 T2 changes are

not homogenously distributed across NAWM.37 The most

abnormal areas are prone to developing lesions in the

future.40 One possible contributor to this observation

could be small, subresolution discrete lesions which mani-

fest as signal variability in NAWM. Speculatively, the pre-

sent normalized T2 (FLAIR) signal properties may reflect

this same histopathological variability evident in quantita-

tive relaxometry and ex vivo imaging. FLAIR signal vari-

ability was approximately fourfold more strongly

correlated with disability compared to FLAIR mean inten-

sity. This result motivates future study of the pathological

basis of this finding.

Focal WMLs remain the imaging hallmark of MS diag-

nosis.41 However, lesion burden is known to be a poor

predictor of disability9 especially at later stages of the dis-

ease.42 Models that incorporate lesion location are moder-

ately more predictive.43 Pathology outside of discrete

lesions is increasingly recognized as important in MS.44

Thus, it is noteworthy that the GMM parameter FLAIR

Table 3. Neuroperformance and Neuro-QoL statistical results.

NPT Neuro-QoL

t P t P

T1w WM μ +7.27 <10−13 +0.65 –
T1w GM μ −11.59 <10−16 −1.76 –
T1w WM σ −0.11 – +0.28 –
T1w GM σ −12.26 <10−16 +1.01 –
FLAIR WM μ +6.47 <10−9 +1.02 –
FLAIR GM μ +26.45 <10−16 +3.50 <10−3

FLAIR WM σ −26.16 <10−16 −4.52 <10−5

FLAIR GM σ −4.09 <10−4 +0.46 –
WM Les Vol −5.28 <10−6 −1.31 –
WM Les Intens −8.45 <10−16 −1.99 –

Note. Main effects derived by linear regression of GMM parameters

on first principal components of neuroperformance tests (NPT) in the

MSPT and Neuro-QoL scores. t values indicate the strength and direc-

tion of the relation. Only significant P values (uncorrected for multiple

comparisons) are listed. The effect size of several GMM parameters

was larger than the effect size of lesion burden metrics. Significant

effects of σ generally were negative, indicating that greater signal

variability is related to greater impairment. The direction of the effect

of μ on performance was not consistent. GMM, Gaussian mixture

modeling.
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WM σ (Table 2) exhibited an AUC of 0.84 for discrimi-

nating controls versus MS patients. From a statistical per-

spective, an AUC of 0.84 is significant. However,

nonunity is congruent with the observation that NAWM

abnormalities are variably present at least partially related

to level of disability (Fig. 5). Whereas immune-mediated

inflammation is a critical component of lesion pathol-

ogy,45 abnormalities in NAWM may be more related to

injury and repair.46 We observed a less strong relationship

between GMM parameters and disability in progressive

patients compared to relapsing patients, in agreement

with prior studies.47 This result may reflect different

pathologies in relapsing versus progressive MS, and it

may also reflect the contributions of spinal cord pathol-

ogy to disability in progressive MS,48 which was not

assessed in this study.

The present analysis method provides estimates of GM

integrity as well as WM measures. GM damage is increas-

ingly recognized as a driver of MS-related disability.49 In

parallel to WM abnormalities, GM can contain discrete

lesions, detectable only with specialized sequences, as well

as diffuse abnormalities. GM pathology may affect neuron

cell bodies, axons, dendrites, myelin, glia, and extracellu-

lar matrix.12 GM disease has been related to WML bur-

den,50 but the causal mechanism underlying this relation

remains unclear. Quantitative GM T1w signal abnormali-

ties have been associated with clinical status.38 We

demonstrated that changes in T1w and FLAIR signal

intensity within GM significantly correlate with clinical

disability. It is possible that the present technique can

quantify subtle changes in T1 and FLAIR associated with

GM lesions as well as diffuse abnormalities.

Limitations of the present study include that the analy-

ses were cross-sectional and drawn from an observational

cohort. Longitudinal, prospective analyses are planned to

clarify the short- and long-term correlates and predictive

power of abnormalities in GMM parameters. The MS

PATHS protocol does not include spinal imaging; thus,

we could not assess contributions of spinal cord pathol-

ogy to MS-related disability. In MS PATHS, clinical sub-

type is self-reported, and the PDDS is a subjective

patient-reported outcome. However, the MSPT was

included in the present work and provided objective sup-

port for the results.

These analyses used a standard MRI protocol at 3T.

Theoretically, this approach can be applied to other data-

sets obtained at lower field strengths or nonstandardized

imaging acquisition. If confirmed, it may be possible to

use this technique to analyze archival clinical trial data

and other large, pre-existing databases. This method

might be particularly promising in the reanalysis of prior

trials of progressive MS in which results were equivocal

or only benefited subgroups of patients. The present

intensity normalization technique does have some limita-

tions. First, it relies on the alignment of a measured his-

togram to a reference which can be affected by subtle

movement impacting numeric results in subtle ways. In

the present work, there were no strong correlations

between alignment error and outcomes of interest (see

Supplemental Methods). Additionally, while intensity

alignment transforms images to a standard intensity

space, the numerical values remain arbitrary precluding

direct comparison to prior quantitative relaxometry

results. Since this study uses standardized imaging proto-

cols, comprehensive evaluation of interprotocol analysis is

reserved for future work.

Conclusions

We report a novel technique for quantification of non-le-

sional abnormalities in WM and GM in MS using data

obtained with clinically available MR sequences. Using

this new approach, we demonstrate diffuse changes in

GM and WM in MS patients compared to healthy con-

trols and differences between relapsing versus progressive

disease. Importantly, these changes were more strongly

correlated with disability than conventional lesion-based

metrics and comparably correlated with volume-based

metrics, reinforcing that non-lesional abnormalities are a

critical component of MS pathophysiology. Our results

also support the notion that progressive non-lesional

pathology is similar across progressive subtypes. The pre-

sent approach enables quantification of abnormalities

using conventional MRI protocols, allowing this tech-

nique to be used in clinical populations. Future work will

investigate the power of this approach to predict disease

progression and monitor response to therapy.
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