19 research outputs found

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Simultaneous activation of Kras and inactivation of p53 induces soft tissue sarcoma and bladder urothelial hyperplasia.

    Get PDF
    The development of the Cre recombinase-controlled (Cre/LoxP) technique allows the manipulation of specific tumorigenic genes, temporarily and spatially. Our original intention of this study was to investigate the role of Kras and p53 in the development of urinary bladder cancer. First, to validate the effect of intravesical delivery on Cre recombination (Adeno-Cre), we examined activity and expression of β-galactosidase in the bladder of control ROSA transgenic mice. The results confirmed specific recombination as evidenced by β-galactosidase activity in the bladder urothelium of these mice. Then, we administered the same adenovirus into the bladder of double transgenic Kras(LSLG12D/+). p53(fl/fl) mice. The virus solution was held in place by a distal urethral retention suture for 2 hours. To our surprise, there was a rapid development of a spindle-cell tumor with sarcoma characteristics near the suture site, within the pelvic area but outside the urinary track. Since we did not see any detectable β-galactosidase in the area outside of the bladder in the validating (control) experiment, we interpreted that this sarcoma formation was likely due to transduction by Adeno-Cre in the soft tissue of the suture site. To avoid the loss of skin integrity associated with the retention suture, we transitioned to an alternative technique without suture to retain the Adeno-Cre into the bladder cavity. Interestingly, although multiple Adeno-Cre treatments were applied, only urothelial hyperplasia but not carcinogenesis was observed in the subsequent experiments of up to 6 months. In conclusion, we observed that the simultaneous inactivation of p53 and activation of Kras induces quick formation of spindle-cell sarcoma in the soft tissues adjacent to the bladder but slow formation of urothelial hyperplasia inside the bladder. These results strongly suggest that the effect of oncogene regulation to produce either hyperplasia or carcinogenesis greatly depends on the tissue type

    β-galactosidase staining of heart, liver, kidney and lung after intravesical treatment of Adeno-Cre.

    No full text
    <p>Adeno-Cre (8.46×10<sup>8</sup> pfu per mouse) was delivered into the bladder lumen of ROSA mice for 2 hours (n=5). At day 7, mice were sacrificed, followed by removal of heart (<b>A</b>), liver (<b>B</b>), kidney (<b>C</b>) and lung (<b>D</b>). X-Gal staining for β-galactosidase activity was performed in all these tissues. No observable staining (blue color) was observed (only counterstaining with fast red was present), as compared with Figure 1 (A-D). All figures are at 10x magnification.</p

    Breeding scheme and genotyping of double transgenic mice.

    No full text
    <p>Two-step plan for breeding double transgenic mice. <b>Upper</b>: Scheme for breeding plan starting from Kras<sup>LSLG12D/+</sup>. p53<sup>+/+</sup> and Kras<sup>+/+</sup>. p53<sup>fl/fl</sup>. Useful mice are marked in blue text. <b>Lower</b>: Agarose gel imaging for genotyping: A double transgenic mouse (mouse 4), Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> was characterized by genotyping. <b>Kras</b> genotyping (left): Wild type (WT) = ~ 507 bp; Mutant = ~600 bp (Heterozygote = ~507 bp and ~ 600 bp); <b>p53</b> genotyping (right): Wild type = ~ 270 bp; Homozygote = ~ 390 bp (Heterozygote = ~ 270 bp and ~ 390 bp).</p

    MRI (A) and histology (B-F) images from mice with Adeno-Cre treatment in the presence of sutures.

    No full text
    <p>Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> mice were intravesically treated with 8.46×10<sup>8</sup> pfu Adeno-Cre with a distal urethral suture placed for 2 hours, as described in Materials and Methods. When the pelvic tumors appeared (four to eight weeks after Adeno-Cre treatment), proton density-weighted MRI scans were performed and then the mice were sacrificed for histological examinations. <b>A</b>: MR images (coronal plane, left; sagittal plane, right) of lower body of mouse with lower pelvic tumor; <b>B</b>: Low power (2x) H&E section shows that the tumor is located in the pelvic soft tissue but not within the urinary track; sarcoma tumor with focal necrosis is apparent in <b>C</b> (10x); increased mitotic rate is apparent in <b>D</b> (40x); invasion of adipose tissue is apparent in <b>E</b> (40x); and invasion of striated muscle <b>F</b> (40x).</p

    Induction of urothelial hyperplasia.

    No full text
    <div><p>Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> mice were intravesically treated with Adeno-Cre (8.46×10<sup>8</sup> pfu Adeno-Cre with 3-hour holding of catheter once per week for a total of four weeks and with no suture applied) 4.5 to 6 months after last instillation. Proton density-weighted MR images (axial plane) of the pelvis of a normal (control) mouse (<b>A</b>-<b>left</b>) and a 6-month treated mouse (<b>A-right</b>) showing focal thickening of the urinary bladder wall (arrow).</p> <p>As compared with histological images from a normal, control mouse (<b>left B, C and D</b>); the H&E histological sections show the presence of mild urothelial hyperplasia at 4.5 months (<b>B-center</b>) and moderate hyperplasia at 6 months (<b>B-right</b>). Ki67 staining shows no increase in nuclear expression in the bladder of a mouse after 4.5 months (<b>C-center</b>) but increased full thickness with nuclear Ki67 expression in the bladder urothelium after 6 months (<b>C</b>-<b>right</b>). COX-2 staining shows a modest increase in the cytoplasmic and peri-nuclear expression in the bladder urothelium at 4.5 months (<b>D-center</b>) and a moderate increase at 6 months (<b>D-right</b>).</p> <p>Recombination analysis of Kras and p53 genes was performed with both Kras (<b>E-left</b>) and p53 (<b>E-right</b>): Lane 1: wild type mouse; lane 2: Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> mouse before Adeno-Cre treatment; lanes 3 and 4: sarcoma tissue from Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> mice after Adeno-Cre treatment with suture (Sar1 and Sar2); lanes 5 and 6: bladder tissues from Kras <sup>LSLG12D/+</sup> /p53 <sup>Fl/Fl</sup> mice after Adeno-Cre treatment without suture (Hyp1 and Hyp2).</p></div

    Immunofluorescent staining of β-galactosideasae and cytokeratin expression of urinary bladder after intravesical treatment with Adeno-Cre.

    No full text
    <p>Adeno-Cre (8.46×10<sup>8</sup> pfu per mouse) was delivered into the bladder lumen of ROSA mice for 2 hours (n=5). Mice were sacrificed and their bladders were removed and processed for immunofluorescence staining. The urothelial mucosa shows in green β-galactosidase (<b>A</b>) and in red cytokeratin 7 expressions (<b>B</b>). In Figure (C), overlapping of the fields (<b>A</b>) and (<b>B</b>) demonstrates the co-localization of β-galactosidase and cytokeratin 7 expressions (orange-yellow). Nuclei were stained with DAPI (blue color). β-galactosidase expression is scattered and observed mainly in the 2/3 upper (inner) layer of the urothelium versus cytokeratin expression which is evenly present in the full thickness of the urothelium.</p
    corecore