6 research outputs found

    A divergent heritage for complex organics in Isheyevo lithic clasts

    Get PDF
    Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200–650‰) relative to H-clasts (δ15N = 50–180‰) and contain extremely 15N-rich domains with δ15N 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System’s N and H isotope variability

    Chromium Isotopic Constraints on the Origin of the Ureilite Parent Body

    No full text
    International audienceWe report on the mass-independent Cr isotope compositions of 11 main group ureilites and an ureilitic trachyandesite (ALM-A). The Cr-54/Cr-52 ratios for main group ureilites vary from -1.06 0.04 to -0.78 0.05 and averaged at -0.91 0.15 (2SD, N = 18) including the data from literature. We argue that this variation reflects primitive mantle heterogeneities within the ureilite parent body (UPB). As such, this body did not experience a global-scale magma ocean, which is consistent with heterogeneous O isotope in ureilites. Furthermore, the e(54)Cr values, Mn/Cr ratios, C isotope ratios, Mg# values, and Fe/Mn ratios in the olivine cores of ureilites are correlated with each other, which suggests the mixing of ureilite precursors from at least two reservoirs, rather than a smelting process or the oxidation from ice melting. All the ureilite samples (including the ALM-A) fall on a well-defined Mn-53-Cr-53 isochron corresponding to a Mn-53/Mn-55 ratio of (6.02 1.59) x 10(-6), which translates to an age of 4566.7 1.5 Ma (within 2 Ma after calcium-aluminum-rich inclusions; CAIs) when anchored to the U-corrected Pb-Pb age for the D'Orbigny angrite. This old age indicates early partial melting on the UPB, consistent with the early accretion of the UPB (within 1 Ma after CAIs) predicted by thermal modeling. Furthermore, there is a 4 similar to 5 Ma age difference between the external isochron in this study and internal isochron ages for the feldspathic clasts in polymict ureilites, which likely reflects an impact history during the early evolution of the UPB

    Thermal History of Matrix Forsterite Grains from Murchison Based on High-resolution Tomography

    No full text
    Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical micro-tomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64~nm), spherical inclusions containing Fe-Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (\sim2100~K) and subsequently cooled and contracted, in agreement with chondrule-forming conditions.Comment: 15 pages, 11 figures, accepted for publication in Ap
    corecore