27 research outputs found

    Focused ultrasound-mediated brain genome editing.

    Get PDF
    Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain

    The challenges of genome-wide interaction studies: Lessons to learn from the analysis of HDL blood levels

    Get PDF
    Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP6SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value, 1 · 1028 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30, 011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP6SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43

    Get PDF
    Desmoplakin (DP) is an obligate component of desmosomes, intercellular adhesive junctions that maintain the integrity of the epidermis and myocardium. Mutations in DP can cause cardiac and cutaneous disease, including arrhythmogenic cardiomyopathy (ACM), an inherited disorder that frequently results in deadly arrhythmias. Conduction defects in ACM are linked to the remodeling and functional interference with Cx43-based gap junctions that electrically and chemically couple cells. How DP loss impairs gap junctions is poorly understood. We show that DP prevents lysosomal-mediated degradation of Cx43. DP loss triggered robust activation of ERK1/2-MAPK and increased phosphorylation of S279/282 of Cx43, which signals clathrin-mediated internalization and subsequent lysosomal degradation of Cx43. RNA sequencing revealed Ras-GTPases as candidates for the aberrant activation of ERK1/2 upon loss of DP. Using a novel Ras inhibitor, Ras/Rap1-specific peptidase (RRSP), or K-Ras knockdown, we demonstrate restoration of Cx43 in DP-deficient cardiomyocytes. Collectively, our results reveal a novel mechanism for the regulation of the Cx43 life cycle by DP in cardiocutaneous models

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The Diagnostic Value of the CA19-9 and Bilirubin Ratio in Patients with Pancreatic Cancer, Distal Bile Duct Cancer and Benign Periampullary Diseases, a Novel Approach

    No full text
    Distinction of pancreatic ductal adenocarcinoma (PDAC) in the head of the pancreas, distal cholangiocarcinoma (dCCA), and benign periampullary conditions, is complex as they often share similar clinical symptoms. However, these diseases require specific management strategies, urging improvement of non-invasive tools for accurate diagnosis. Recent evidence has shown that the ratio between CA19-9 and bilirubin levels supports diagnostic distinction of benign or malignant hepatopancreaticobiliary diseases. Here, we investigate the diagnostic value of this ratio in PDAC, dCCA and benign diseases of the periampullary region in a novel fashion. To address this aim, we enrolled 265 patients with hepatopancreaticobiliary diseases and constructed four logistic regression models on a subset of patients (n = 232) based on CA19-9, bilirubin and the ratio of both values: CA19-9/(bilirubin−1). Non-linearity was investigated using restricted cubic splines and a final model, the ‘Model Ratio’, based on these three variables was fitted using multivariable fractional polynomials. The performance of this model was consistently superior in terms of discrimination and calibration compared to models based on CA19-9 combined with bilirubin and CA19-9 or bilirubin alone. The ‘Model Ratio’ accurately distinguished between malignant and benign disease (AUC [95% CI], 0.91 [0.86–0.95]), PDAC and benign disease (AUC 0.91 [0.87–0.96]) and PDAC and dCCA (AUC 0.83 [0.74–0.92]) which was confirmed by internal validation using 1000 bootstrap replicates. These findings provide a foundation to improve minimally-invasive diagnostic procedures, ultimately ameliorating effective therapy for PDAC and dCCA

    The Diagnostic Value of the CA19-9 and Bilirubin Ratio in Patients with Pancreatic Cancer, Distal Bile Duct Cancer and Benign Periampullary Diseases, a Novel Approach

    Get PDF
    Distinction of pancreatic ductal adenocarcinoma (PDAC) in the head of the pancreas, distal cholangiocarcinoma (dCCA), and benign periampullary conditions, is complex as they often share similar clinical symptoms. However, these diseases require specific management strategies, urging improvement of non-invasive tools for accurate diagnosis. Recent evidence has shown that the ratio between CA19-9 and bilirubin levels supports diagnostic distinction of benign or malignant hepatopancreaticobiliary diseases. Here, we investigate the diagnostic value of this ratio in PDAC, dCCA and benign diseases of the periampullary region in a novel fashion. To address this aim, we enrolled 265 patients with hepatopancreaticobiliary diseases and constructed four logistic regression models on a subset of patients (n = 232) based on CA19-9, bilirubin and the ratio of both values: CA19-9/(bilirubin−1). Non-linearity was investigated using restricted cubic splines and a final model, the ‘Model Ratio’, based on these three variables was fitted using multivariable fractional polynomials. The performance of this model was consistently superior in terms of discrimination and calibration compared to models based on CA19-9 combined with bilirubin and CA19-9 or bilirubin alone. The ‘Model Ratio’ accurately distinguished between malignant and benign disease (AUC [95% CI], 0.91 [0.86–0.95]), PDAC and benign disease (AUC 0.91 [0.87–0.96]) and PDAC and dCCA (AUC 0.83 [0.74–0.92]) which was confirmed by internal validation using 1000 bootstrap replicates. These findings provide a foundation to improve minimally-invasive diagnostic procedures, ultimately ameliorating effective therapy for PDAC and dCCA

    Emergence of a Reassortant 2.3.4.4b Highly Pathogenic H5N1 Avian Influenza Virus Containing H9N2 PA Gene in Burkina Faso, West Africa, in 2021

    No full text
    Since 2006, the poultry population in Burkina Faso has been seriously hit by different waves of Highly Pathogenic Avian Influenza (HPAI) H5N1 epizootics. In December 2021, three distinct regions of Burkina Faso, namely, Gomboussougou, Bonyollo, and Koubri, detected HPAI H5N1 viruses in poultry. Whole genome characterization and statistical phylogenetic approaches were applied to shed light on the potential origin of these viruses and estimate the time of virus emergence. Our results revealed that the HPAI H5N1 viruses reported in the three affected regions of Burkina Faso cluster together within clade 2.3.4.4b, and are closely related to HPAI H5N1 viruses identified in Nigeria and Niger in the period 2021–2022, except for the PA gene, which clusters with H9N2 viruses of the zoonotic G1 lineage collected in West Africa between 2017 and 2020. These reassortant viruses possess several mutations that may be associated with an increased zoonotic potential. Although it is difficult to ascertain where and when the reassortment event occurred, the emergence of a H5N1/H9N2 reassortant virus in a vulnerable region, such as West Africa, raises concerns about its possible impact on animal and human health. These findings also highlight the risk that West Africa may become a new hotspot for the emergence of new genotypes of HPAI viruses
    corecore