60 research outputs found

    An Enabling Act

    Get PDF
    Infection with human T-lymphotropic virus type 1 (HTLV-1) can be associated with hematologic malignancy, inflammatory syndromes, or infectious complications. Herein, we bring attention to HTLV-1 infection complications as we discuss a case of disseminated cryptococcosis in a patient with HTLV-1-associated T cell lymphoma

    Analysis of clonality and antibiotic resistance among early clinical isolates of Enterococcus faecium in the United States.

    Get PDF
    BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment

    Antecedent Treatment with Different Antibiotic Agents as a Risk Factor for Vancomycin-Resistant Enterococcus

    Get PDF
    We conducted a matched case-control study to compare the effect of antecedent treatment with various antibiotics on subsequent isolation of vancomycin-resistant Enterococcus (VRE); 880 in-patients; 233 VRE cases, and 647 matched controls were included. After being matched for hospital location, calendar time, and duration of hospitalization, the following variables predicted VRE positivity: main admitting diagnosis; a coexisting condition (e.g., diabetes mellitus, organ transplant, or hepatobiliary disease); and infection or colonization with methicillin-resistant Staphylococcus aureus or Clostridium difficile within the past year (independent of vancomycin treatment). After controlling for these variables, we examined the effect of various antibiotics. Intravenous treatment with third-generation cephalosporins, metronidazole, and fluoroquinolones was positively associated with VRE. In our institution, when we adjusted the data for temporo-spatial factors, patient characteristics, and hospital events, treatment with third-generation cephalosporins, metronidazole, and fluoroquinolones was identified as a risk factor for VRE. Vancomycin was not a risk factor for isolation of VRE

    Tumor Progression Locus 2 (Tpl2) Deficiency Does Not Protect against Obesity-Induced Metabolic Disease

    Get PDF
    Obesity is associated with a state of chronic low grade inflammation that plays an important role in the development of insulin resistance. Tumor progression locus 2 (Tpl2) is a serine/threonine mitogen activated protein kinase kinase kinase (MAP3K) involved in regulating responses to specific inflammatory stimuli. Here we have used mice lacking Tpl2 to examine its role in obesity-associated insulin resistance. Wild type (wt) and tpl2−/− mice accumulated comparable amounts of fat and lean mass when fed either a standard chow diet or two different high fat (HF) diets containing either 42% or 59% of energy content derived from fat. No differences in glucose tolerance were observed between wt and tpl2−/− mice on any of these diets. Insulin tolerance was similar on both standard chow and 42% HF diets, but was slightly impaired in tpl2−/− mice fed the 59% HFD. While gene expression markers of macrophage recruitment and inflammation were increased in the white adipose tissue of HF fed mice compared with standard chow fed mice, no differences were observed between wt and tpl2−/− mice. Finally, a HF diet did not increase Tpl2 expression nor did it activate Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), the MAPK downstream of Tpl2. These findings argue that Tpl2 does not play a non-redundant role in obesity-associated metabolic dysfunction

    Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus

    Get PDF
    Background: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. Methods: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. Results: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. Conclusion: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus

    Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    Get PDF
    Background: Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings: In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance: These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.National Institutes of Health (U.S.) (grant R01GM59903)National Institutes of Health (U.S.) (grant R01AI050875)Netherlands Organization for Scientific Research (VICI grant 700.56.442)Massachusetts Technology Transfer Center (MTTC)National Institutes of Health (U.S.) (grant 5U54MH084690-02

    Efficacy of Daptomycin in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus

    No full text
    Methicillin-resistant Staphylococcus aureus is becoming increasingly prevalent as both a nosocomial and a community-acquired pathogen. Daptomycin, a lipopeptide antibiotic now in phase III clinical trials, is rapidly bactericidal in vitro against a range of gram-positive organisms, including methicillin-resistant S. aureus (MRSA). In this study, we compared the efficacy of daptomycin with that of vancomycin, each with or without rifampin, in a model of experimental aortic valve endocarditis due to MRSA. The infecting strain (MRSA strain 32) was susceptible to daptomycin (MIC = 1 μg/ml), vancomycin (MIC = 0.5 μg/ml), and rifampin (MIC = 0.5 μg/ml). Daptomycin was administered at 25 or 40 mg/kg q24h (q24h) by subcutaneous injection in an attempt to simulate human doses of 4 and 6 mg/kg q24h, respectively. Vancomycin was given at 150 mg/kg q24h by continuous intravenous infusion. Rifampin was given at 25 mg/kg by intramuscular injection q24h. Treatment was started 6 h postinoculation and continued for 4.5 days. Outcome was assessed by counting the residual viable bacteria in vegetations. The mean peak daptomycin levels in serum at 2 h after subcutaneous administration of 25 and 40 mg/kg were 64 and 91 μg/ml, respectively. Daptomycin was undetectable in serum at 24 h. The total exposure was comparable to that achieved clinically in humans receiving the drug. Bacterial counts (mean log(10) number of CFU per gram ± the standard deviation) in untreated controls reached 10.6 ± 0.8. In treated rats, bacterial counts were as follows: vancomycin, 7.1 ± 2.5; daptomycin at 25 mg/kg, 5.5 ± 1.7; daptomycin at 40 mg/kg, 4.2 ± 1.5. The difference between daptomycin at 40 mg/kg and vancomycin at 150 mg/kg was statistically significant (P = 0.004). In the study of combination therapy, vegetation bacterial counts were as follows: daptomycin at 40 mg/kg, 4.6 ± 1.6; rifampin, 3.6 ± 1.3; vancomycin plus rifampin, 3.3 ± 1.1; daptomycin plus rifampin, 2.9 ± 0.8. The difference between daptomycin and daptomycin plus rifampin was statistically significant (P = 0.006). These results support the continued evaluation of daptomycin for serious MRSA infections, including infective endocarditis
    • …
    corecore