40 research outputs found

    Mutational Analysis of the Poly(ADP-Ribosyl)ation Sites of the Transcription Factor CTCF Provides an Insight into the Mechanism of Its Regulation by Poly(ADP-Ribosyl)ation

    Get PDF
    ABSTRACT Poly(ADP-ribosyl)ation of the conserved multifunctional transcription factor CTCF was previously identified as important to maintain CTCF insulator and chromatin barrier functions. However, the molecular mechanism of this regulation and also the necessity of this modification for other CTCF functions remain unknown. In this study, we identified potential sites of poly(ADP-ribosyl)ation within the N-terminal domain of CTCF and generated a mutant deficient in poly(ADP-ribosyl)ation. Using this CTCF mutant, we demonstrated the requirement of poly(ADP-ribosyl)ation for optimal CTCF function in transcriptional activation of the p 19ARF promoter and inhibition of cell proliferation. By using a newly generated isogenic insulator reporter cell line, the CTCF insulator function at the mouse Igf2-H19 imprinting control region (ICR) was found to be compromised by the CTCF mutation. The association and simultaneous presence of PARP-1 and CTCF at the ICR, confirmed by single and serial chromatin immunoprecipitation assays, were found to be independent of CTCF poly(ADP-ribosyl)ation. These results suggest a model of CTCF regulation by poly(ADP-ribosyl)ation whereby CTCF and PARP-1 form functional complexes at sites along the DNA, producing a dynamic reversible modification of CTCF. By using bioinformatics tools, numerous sites of CTCF and PARP-1 colocalization were demonstrated, suggesting that such regulation of CTCF may take place at the genome level. </jats:p

    YB-1 And CTCF Differentially Regulate The 5-HTT Polymorphic Intron 2 Enhancer Which Predisposes To A Variety Of Neurological Disorders.

    Get PDF
    Mutation or inappropriate expression of the serotonin transporter (5-HTT) gene has been postulated as a possible predisposing factor in many CNS-related disorders, including numerous studies of affective disorders. The human gene encompasses 15 exons spanning -31 kb on chromosome 17qll (Lesch et aI., 1994)

    A Novel Mechanism for CTCF in the Epigenetic Regulation of Bax in Breast Cancer Cells

    Get PDF
    Wepreviously reported the association of elevated levels of themultifunctional transcription factor, CCCTC binding factor (CTCF), in breast cancer cells with the specific anti-apoptotic function of CTCF. To understand the molecularmechanisms of this phenomenon, we investigated regulation of the human Bax gene by CTCF in breast and non-breast cells. Two CTCF binding sites (CTSs) within the Bax promoter were identified. In all cells, breast and non-breast, active histone modifications were present at these CTSs, DNA harboring this region was unmethylated, and levels of Bax mRNA and protein were similar. Nevertheless, up-regulation of Bax mRNA and protein and apoptotic cell deathwere observed only in breast cancer cells depleted of CTCF.We proposed that increased CTCF binding to the Bax promoter in breast cancer cells, by comparison with non-breast cells, may be mechanistically linked to the specific apoptotic phenotype in CTCF-depleted breast cancer cells. In this study, we show that CTCF binding was enriched at the Bax CTSs in breast cancer cells and tumors; in contrast, binding of other transcription factors (SP1,WT1, EGR1, and c-Myc) was generally increased in non- breast cells and normal breast tissues. Our findings suggest a novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells, whereby elevated levels of CTCF support preferential binding of CTCF to the Bax CTSs. In this context, CTCF functions as a transcriptional repressor counteracting influences of positive regulatory factors; depletion of breast cancer cells from CTCF therefore results in the activation of Bax and apoptosis. © 2013 Neoplasia Press, Inc

    Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism

    Get PDF
    Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism

    Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer

    Get PDF
    The imprinted insulin-like growth factor 2 (IGF2) gene is expressed predominantly from the paternal allele. Loss of imprinting (LOI) associated with hypomethylation at the promoter proximal sequence (DMR0) of the IGF2 gene was proposed as a predisposing constitutive risk biomarker for colorectal cancer. We used pyrosequencing to assess whether IGF2 DMR0 methylation is either present constitutively prior to cancer or whether it is acquired tissue-specifically after the onset of cancer. DNA samples from tumour tissues and matched non-tumour tissues from 22 breast and 42 colorectal cancer patients as well as peripheral blood samples obtained from colorectal cancer patients [SEARCH (n=case 192, controls 96)], breast cancer patients [ABC (n=case 364, controls 96)] and the European Prospective Investigation of Cancer [EPIC-Norfolk (n=breast 228, colorectal 225, controls 895)] were analysed. The EPIC samples were collected 2–5 years prior to diagnosis of breast or colorectal cancer. IGF2 DMR0 methylation levels in tumours were lower than matched non-tumour tissue. Hypomethylation of DMR0 was detected in breast (33%) and colorectal (80%) tumour tissues with a higher frequency than LOI indicating that methylation levels are a better indicator of cancer than LOI. In the EPIC population, the prevalence of IGF2 DMR0 hypomethylation was 9.5% and this correlated with increased age not cancer risk. Thus, IGF2 DMR0 hypomethylation occurs as an acquired tissue-specific somatic event rather than a constitutive innate epimutation. These results indicate that IGF2 DMR0 hypomethylation has diagnostic potential for colon cancer rather than value as a surrogate biomarker for constitutive LOI

    High Mobility Group Box 1 (HMGB1) Induces Toll-Like Receptor 4-Mediated Production of the Immunosuppressive Protein Galectin-9 in Human Cancer Cells

    Get PDF
    High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called “danger signal” and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-β), displaying autocrine/paracrine activities. TGF-β induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages)

    Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells

    Get PDF
    CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present

    Transforming growth factor beta type 1 (TGF-B) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells

    Get PDF
    Galectin-9 is one of the key proteins employed by a variety of human malignancies to suppress anti-cancer activities of cytotoxic lymphoid cells and thus escape immune surveillance. Human cancer cells in most cases express higher levels of galectin-9 compared to non-transformed cells. However, the biochemical mechanisms underlying this phenomenon remain unclear. Here we report for the first time that in human cancer as well as embryonic cells, the transcription factors hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are involved in upregulation of transforming growth factor beta 1 (TGF-β1) expression, leading to activation of the transcription factor Smad3 through autocrine action. This process triggers upregulation of galectin-9 expression in both malignant (mainly in breast and colorectal cancer as well as acute myeloid leukaemia (AML)) and embryonic cells. The effect, however, was not observed in mature non-transformed human cells. TGF-β1-activated Smad3 therefore displays differential behaviour in human cancer and embryonic vs non-malignant cells. This study uncovered a self-supporting biochemical mechanism underlying high levels of galectin-9 expression operated by the human cancer and embryonic cells employed in our investigations. Our results suggest the possibility of using the TGF-β1 signalling pathway as a potential highly efficient target for cancer immunotherapy

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation
    corecore