30 research outputs found

    A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe

    Get PDF
    Background: Antimicrobial resistance is a global threat, which requires novel intervention strategies, for which priority pathogens and settings need to be determined. Objectives: We evaluated pathogen-specific excess health burden of drug-resistant bloodstream infections (BSIs) in Europe. Methods: A systematic review and meta-analysis. Data sources: MEDLINE, Embase, and grey literature for the period January 1990 to May 2022. Study eligibility criteria: Studies that reported burden data for six key drug-resistant pathogens: carbapenem-resistant (CR) Pseudomonas aeruginosa and Acinetobacter baumannii, third-generation cephalosporin or CR Escherichia coli and Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Excess health outcomes compared with drug-susceptible BSIs or uninfected patients. For MRSA and third-generation cephalosporin E. coli and K. pneumoniae BSIs, five or more European studies were identified. For all others, the search was extended to high-income countries. Participants: Paediatric and adult patients diagnosed with drug-resistant BSI. Interventions: Not applicable. Assessment of risk of bias: An adapted version of the Joanna-Briggs Institute assessment tool. Methods of data synthesis: Random-effect models were used to pool pathogen-specific burden estimates. Results: We screened 7154 titles, 1078 full-texts and found 56 studies on BSIs. Most studies compared outcomes of drug-resistant to drug-susceptible BSIs (46/56, 82.1%), and reported mortality (55/56 studies, 98.6%). The pooled crude estimate for excess all-cause mortality of drug-resistant versus drug-susceptible BSIs ranged from OR 1.31 (95% CI 1.03–1.68) for CR P. aeruginosa to OR 3.44 (95% CI 1.62–7.32) for CR K. pneumoniae. Pooled crude estimates comparing mortality to uninfected patients were available for vancomycin-resistant Enterococcus and MRSA BSIs (OR of 11.19 [95% CI 6.92–18.09] and OR 6.18 [95% CI 2.10–18.17], respectively). Conclusions: Drug-resistant BSIs are associated with increased mortality, with the magnitude of the effect influenced by pathogen type and comparator. Future research should address crucial knowledge gaps in pathogen- and infection-specific burdens to guide development of novel interventions

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2′- O -methylation

    No full text
    Target-directed microRNA (miRNA) degradation (TDMD), which is mediated by the protein ZSWIM8, plays a widespread role in shaping miRNA abundances across bilateria. Some endogenous small interfering RNAs (siRNAs) of Drosophila cells have target sites resembling those that trigger TDMD, raising the question as to whether they too might undergo such regulation by Dora, the Drosophila ZSWIM8 homolog. Here, we find that some of these siRNAs are indeed sensitive to Dora when loaded into Ago1, the Argonaute paralog that preferentially associates with miRNAs. Despite this sensitivity when loaded into Ago1, these siRNAs are not detectably regulated by target-directed degradation because most molecules are loaded into Ago2, the Argonaute paralog that preferentially associates with siRNAs, and we find that siRNAs and miRNAs loaded into Ago2 are insensitive to Dora. One explanation for the protection of these small RNAs loaded into Ago2 is that these small RNAs are 2′-O-methylated at their 3′ termini. However, 2′-O-methylation does not protect these RNAs from Dora-mediated target-directed degradation, which indicates that their protection is instead conferred by features of the Ago2 protein itself. Together, these observations clarify the requirements for regulation by target-directed degradation and expand our understanding of the role of 2′-O-methylation in small-RNA biology.</jats:p

    Global analyses of the dynamics of mammalian microRNA metabolism

    No full text

    Key issues on sharing and transformation of lessons from experiences by actor organisations in the aviation industry

    No full text
    This paper sets out generic requirements including principles of system theory, organizational learning and operational readiness, for a learning system in the aviation sector. On the basis of our analysis we derived a number of key issues for sharing and transforming lessons from experiences. These issues highlight the critical role of context transformation, the use of performance data, and the sharing of knowledge among competitors. An advanced learning system is vital for further innovation in the aviation industry

    Tissue Expression Pattern of PMK-2 p38 MAPK Is Established by the miR-58 Family in <i>C. elegans</i>

    Get PDF
    <div><p>Analyses of gene expression profiles in evolutionarily diverse organisms have revealed a role for microRNAs in tuning tissue-specific gene expression. Here, we show that the relatively abundant and constitutively expressed miR-58 family of microRNAs sharply defines the tissue-specific expression of the broadly transcribed gene encoding PMK-2 p38 MAPK in <i>Caenorhabditis elegans</i>. Whereas PMK-2 functions redundantly with PMK-1 in the nervous system to regulate neuronal development and behavioral responses to pathogenic bacteria, the miR-58, miR-80, miR-81, and miR-82 microRNAs function redundantly to destabilize <i>pmk-2</i> mRNA in non-neuronal cells with switch-like potency. Our data suggest a role for the miR-58 family in the establishment of neuronal-specific gene expression in <i>C. elegans</i>, and support a more general role for microRNAs in the establishment of tissue-specific gene expression.</p></div

    PMK-1 and PMK-2 function redundantly in the nervous system but not the intestine.

    No full text
    <p>(A) The <i>pmk</i> operon showing mutations utilized and isolated in this study. Gray fill, corresponding unspliced transcript; white fill, corresponding 5’ and 3’UTRs. <i>pmk-2</i> mutations: <i>qd284</i>, 10 bp deletion, frameshift; <i>qd287</i>, 7 bp insertion, frameshift; <i>qd279</i> and <i>qd280</i>, as indicated in reference to isoform <i>pmk-2b</i> (release WS245); <i>qd171</i>, 913/184 bp insertion/deletion. <i>pmk-1</i> mutation: <i>km25</i>, 375 bp deletion. (B-E) Phenotypic analysis of mutants deficient in p38 MAPK signaling. (B) Bright field and fluorescence microscopy images of 1-day-old adult worms carrying the <i>agIs219[P<sub>T24B8.5</sub>::GFP]</i> transgene. (C) Pathogenesis assay of L4 larval stage worms on <i>P. aeruginosa</i> PA14. All strains carry the <i>agIs219[P<sub>T24B8.5</sub>::GFP]</i> transgene. (D) Expression of <i>str-2</i>::<i>GFP</i> in the AWC olfactory neurons of L3 and L4 larval stage and young adult worms. (E) Quantification of GFP expression from the <i>nIs145[P</i><sub><i>tph-1</i></sub>::<i>GFP]</i> transgene in 1-day-old adult worms after a 6 hr exposure to <i>E. coli</i> OP50 or <i>P. aeruginosa</i> PA14. Shown is a representative experiment. Error bars, ± standard deviation. (n.s. not significant, *** <i>P</i><0.001, two-way ANOVA with Bonferroni post-test). (F) PMK-1 p38 MAPK functions independently of PMK-2 p38 MAPK in the intestine downstream of the TIR-1-NSY-1-SEK-1 signaling module in the regulation of immune effector gene expression in response to pathogenic microbes. PMK-1 and PMK-2 p38 MAPKs function redundantly in the nervous system downstream of TIR-1-NSY-1-SEK-1 in the regulation of AWC neural asymmetry and pathogen-induced upregulation of <i>tph-1</i> expression in the ADF neurons.</p
    corecore