21 research outputs found

    Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach

    Get PDF
    This paper is concerned with the modeling of infectious disease spread in a composite space-time domain under conditions of uncertainty. We focus on stochastic modeling that accounts for basic mechanisms of disease distribution and multi-sourced in situ uncertainties. Starting from the general formulation of population migration dynamics and the specification of transmission and recovery rates, the model studies the functional formulation of the evolution of the fractions of susceptible-infected-recovered individuals. The suggested approach is capable of: a) modeling population dynamics within and across localities, b) integrating the disease representation (i.e. susceptible-infected-recovered individuals) with observation time series at different geographical locations and other sources of information (e.g. hard and soft data, empirical relationships, secondary information), and c) generating predictions of disease spread and associated parameters in real time, while considering model and observation uncertainties. Key aspects of the proposed approach are illustrated by means of simulations (i.e. synthetic studies), and a real-world application using hand-foot-mouth disease (HFMD) data from China.J.M. Angulo and A.E. Madrid have been partially supported by grants MTM2009-13250 and MTM2012-32666 of SGPI, and P08-FQM-3834 of the Andalusian CICE, Spain. H-L Yu has been partially supported by a grant from National Science Council of Taiwan (NSC101-2628-E-002-017-MY3 and NSC102-2221-E-002-140-MY3). A. Kolovos was supported by SpaceTimeWorks, LLC. G. Christakos was supported by a Yongqian Chair Professorship (Zhejiang University, China)

    Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections

    Get PDF
    Dose response in micro-parasite infections is usually shallower than predicted by the independent action model, which assumes that each infectious unit has a probability of infection that is independent of the presence of other infectious units. Moreover, the prevalence of mixed-genotype infections was greater than predicted by this model. No probabilistic infection model has been proposed to account for the higher prevalence of mixed-genotype infections. We use model selection within a set of four alternative models to explain high prevalence of mixed-genotype infections in combination with a shallow dose response. These models contrast dependent versus independent action of micro-parasite infectious units, and homogeneous versus heterogeneous host susceptibility. We specifically consider a situation in which genome differences between genotypes are minimal, and highly unlikely to result in genotype-genotype interactions. Data on dose response and mixed-genotype infection prevalence were collected by challenging fifth instar Spodoptera exigua larvae with two genotypes of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), differing only in a 100 bp PCR marker sequence. We show that an independent action model that includes heterogeneity in host susceptibility can explain both the shallow dose response and the high prevalence of mixed-genotype infections. Theoretical results indicate that variation in host susceptibility is inextricably linked to increased prevalence of mixed-genotype infections. We have shown, to our knowledge for the first time, how heterogeneity in host susceptibility affects mixed-genotype infection prevalence. No evidence was found that virions operate dependently. While it has been recognized that heterogeneity in host susceptibility must be included in models of micro-parasite transmission and epidemiology to account for dose response, here we show that heterogeneity in susceptibility is also a fundamental principle explaining patterns of pathogen genetic diversity among hosts in a population. This principle has potentially wide implications for the monitoring, modeling and management of infectious diseases

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness
    corecore