36 research outputs found

    Bovine Lactoferrin Counteracts Toll-Like Receptor Mediated Activation Signals in Antigen Presenting Cells

    Get PDF
    Lactoferrin (LF), a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs) generated in the presence of bovine LF (bLF) fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1), indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR) agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding further evidence for a critical role of bLF in directing host immune function

    Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11).

    Get PDF
    Contains fulltext : 81619.pdf (publisher's version ) (Open Access)BACKGROUND: The treatment of patients with haematological malignancies by means of haematopoietic stem cell transplantation (HSCT) is often accompanied by life threatening infections. With emerging antimicrobial resistance there is an increased need for new agents, with a beneficial safety profile. Therefore we evaluated the safety of the promising new antimicrobial peptide human lactoferrrin 1-11 (hLF1-11) in healthy volunteers and patients. METHODS: We undertook a sequential, randomised, double-blind, placebo-controlled study using ascending single (0.005, 0.05, 0.5, 5 mg) and multiple intravenous doses (0.5, 5 mg) in healthy volunteers, and open-label, single intravenous 5 mg doses in autologous HSCT recipients. Results : Single and multiple doses of hLF1-11 were tolerable up to 5 mg intravenously in healthy volunteers, while 5 mg single dose was tolerable in patients. Elevations in transaminases possibly related to treatment were reversible and not serious. CONCLUSION: The new antimicrobial hLF1-11 is well tolerated in healthy volunteers with repeated daily doses up to 5 mg. The side-effect profile is very favourable for an antimicrobial, the only undesirable effect being a possible elevation of transaminases, which may be related to hLF1-11 although the current data do not allow conclusive interpretation of treatment relationship. A lower dose is recommended for the forthcoming multiple dosing studies in HSCT patients. TRIAL REGISTRATION: ClinicalTrials.gov: nct00509938

    Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide

    Get PDF
    Antibacterial peptide acylation, which mimics the structure of the natural lipopeptide polymyxin B, increases antimicrobial and endotoxin-neutralizing activities. The interaction of the lactoferricin-derived peptide LF11 and its N-terminally acylated analogue, lauryl-LF11, with different chemotypes of bacterial lipopolysaccharide (LPS Re, Ra and smooth S form) was investigated by biophysical means and was related to the peptides' biological activities. Both peptides exhibit high antibacterial activity against the three strains of Salmonella enterica differing in the LPS chemotype. Lauryl-LF11 has one order of magnitude higher activity against Re-type, but activity against Ra- and S-type bacteria is comparable with that of LF11. The alkyl derivative peptide lauryl-LF11 shows a much stronger inhibition of the LPS-induced cytokine induction in human mononuclear cells than LF11. Although peptide–LPS interaction is essentially of electrostatic nature, the lauryl-modified peptide displays a strong hydrophobic component. Such a feature might then explain the fact that saturation of the peptide binding takes place at a much lower peptide/LPS ratio for LF11 than for lauryl-LF11, and that an overcompensation of the negative LPS backbone charges is observed for lauryl-LF11. The influence of LF11 on the gel-to-liquid-crystalline phase-transition of LPS is negligible for LPS Re, but clearly fluidizing for LPS Ra. In contrast, lauryl-LF11 causes a cholesterol-like effect in the two chemotypes, fluidizing in the gel and rigidifying of the hydrocarbon chains in the liquid-crystalline phase. Both peptides convert the mixed unilamellar/non-lamellar aggregate structure of lipid A, the ‘endotoxic principle’ of LPS, into a multilamellar one. These data contribute to the understanding of the mechanisms of the peptide-mediated neutralization of endotoxin and effect of lipid modification of peptides
    corecore