259 research outputs found
Surface Tetherin Is A Novel Cell-Specific Biomarker for Interferon Response in Systemic Lupus Erythematosus
Incomplete and Systemic Lupus Erythematosus Reveal A Different Pattern of Interferon-Stimulated Genes Up-Regulation
Recommended from our members
A report of novel STIM1 deficiency and 6 year follow up of two previous cases associated with mild immunological phenotype
Loss of function or null mutations of Stromal interaction molecule 1 (STIM1) are known to cause early-onset combined immunodeficiency (CID) disease with recurrent and chronic infections, autoimmunity, haemolytic anaemia, ectodermal dysplasia, muscular weakness and myalgia. here we report of novel STIM1 deficiency and 6 year follow up of two previous cases associated with mild immunological phenotyp
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
Functional Recellularization of Acellular Rat Liver Scaffold by Induced Pluripotent Stem Cells: Molecular Evidence for Wnt/B-Catenin Upregulation.
BACKGROUND: Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/β-catenin signaling in liver development and generation. METHODS: Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/β-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS: iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/β-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION: This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment
Available phosphorus levels in diets supplemented with phytase for male broilers aged 22 to 42 days kept in a high-temperature environment
ABSTRACT This study was conducted to evaluate the effect of reduction of the available phosphorus (avP) in diets supplemented with 500 FTU/kg phytase on performance, carcass characteristics, and bone mineralization of broilers aged 22 to 42 days kept in a high-temperature environment. A total of 336 Cobb broilers with an average initial weight of 0.883±0.005 kg were distributed in a completely randomized design with six treatments - a positive control (0.354 and 0.309% avP without addition of bacterial phytase for the phases of 22 to 33 and 34 to 42 days, respectively), and another five diets with inclusion of phytase (500 FTU) and reduction of the level of avP (0.354, 0.294, 0.233, 0.173, and 0.112%; and 0.309, 0.258, 0.207, 0.156, and 0.106% for the phases of 22 to 33 and 34 to 42 days, respectively) - eight replicates, and seven birds per cage. The experimental diets were formulated to meet all nutritional requirements, except for avP and calcium. Birds were kept in climatic chambers at a temperature of 32.2±0.4 °C and air humidity of 65.3±5.9%. Phytase acted by making the phytate P available in diets with reduction in the levels of avP, keeping feed intake, weight gain, feed:gain, and carcass characteristics unchanged. Treatments affected ash and calcium deposition and the Ca:P ratio in the bone; the group fed the diets with 0.112 and 0.106%, from 22 to 33 and 34 to 42 days of age, respectively, obtained the lowest values, although the phosphorus deposition in the bone was not affected. Diets supplemented with 500 FTU of phytase, with available phosphorus reduced to 0.173 and 0.156%, and a fixed Ca:avP ratio of 2.1:1, meet the requirements of broilers aged 22 to 33 and 34 to 42 days, respectively, reared in a high-temperature environment
Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity
Background
Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE).
Methods
A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression.
Findings
In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12–2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09–3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC.
Interpretation
FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols.
Funding
Medical Research Council, National Institute for Health and Care Research, Versus Arthritis
Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells
High-grade osteosarcoma occurs predominantly in adolescents and young adults and has an overall survival rate of about 60%, despite chemotherapy and surgery. Therefore, novel treatment modalities are needed to prevent or treat recurrent disease. Natural killer (NK) cells are lymphocytes with cytotoxic activity toward virus-infected or malignant cells. We explored the feasibility of autologous and allogeneic NK cell–mediated therapies for chemotherapy-resistant and chemotherapy-sensitive high-grade osteosarcoma. The expression by osteosarcoma cells of ligands for activating NK cell receptors was studied in vitro and in vivo, and their contribution to NK cell–mediated cytolysis was studied by specific antibody blockade. Chromium release cytotoxicity assays revealed chemotherapy-sensitive and chemotherapy-resistant osteosarcoma cell lines and osteosarcoma primary cultures to be sensitive to NK cell–mediated cytolysis. Cytolytic activity was strongly enhanced by IL-15 activation and was dependent on DNAM-1 and NKG2D pathways. Autologous and allogeneic activated NK cells lysed osteosarcoma primary cultures equally well. Osteosarcoma patient–derived NK cells were functionally and phenotypically unimpaired. In conclusion, osteosarcoma cells, including chemoresistant variants, are highly susceptible to lysis by IL-15-induced NK cells from both allogeneic and autologous origin. Our data support the exploitation of NK cells or NK cell–activating agents in patients with high-grade osteosarcoma
Use of tubularized incised plate urethroplasty for secondary hypospadias repair or repair in circumcised patients
Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine
- …
