319 research outputs found

    Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR+

    Get PDF
    Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D) model of hepcidin-25 with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others

    Cu, Fe, and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy

    Get PDF
    Acknowledgments—A.H.E-K thanks Maren Koenig and Dorit Becker for their support in sample preparation. The authors thank Prof. Gernot Riedel, Dr Silke Frahm, and Mandy Magbagbeolu for help with mouse perfusion and harvesting of the brain tissues. Funding and additional information—This work was carried out in the context of the EMPIR research project 15HLT02 (ReMiND). This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union’s Horizon 2020 research and innovation program.Peer reviewedPublisher PD

    Kinetic investigation of hydroxide ion and DNA attack on some high spin iron (II) chelates Bearing ONO Donors amino acid Schiff bases

    Get PDF
    The reactivity of few novel high spin Fe(II) complexes of Schiff base ligands derived from 2-hydroxynaphthaldehyde and some variety of amino acids with OH- ion has been examined in aqueous mixture at temperature in the range 10–40 Co. Based on the kinetic investigations, the rate law and a plausible mechanism were proposed and discussed. The general rate equation was suggested as follows: rate = kobs [Complex], where kobs.= k1 + k2 [OH-]. Base catalyzed hydrolysis kinetics measurements imply pseudo-first order doubly stage rates due the presence of merand fac-isomers. The observed rate constants kobs are correlated the effect of substituent R in the structure of the ligands. From the effect of temperature on the rate; various thermodynamic parameters have been evaluated. The evaluated rate constants and activation parameters are in a good agreement with the stability constants of the investigated complexes

    Root uptake and metabolization of Alternaria toxins by winter wheat plants using a hydroponic system

    Get PDF
    Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil–plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC–MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants

    Physiotherapeutic protocol and ZnO nanoparticles: a combined novel treatment program against bacterial pyomyositis

    Get PDF
    Myositis tropicans or pyomyositis is a muscle inflammation resulting from a bacterial infection of skeletal muscle (commonly caused by Staphylococcus aureus) that usually leads to hematogenous muscle seeding. The present study was designed to estimate the role of ZnO-NPs and a physiotherapeutic program in the management of induced biceps femoris atrophy in rats through histological, biochemical, and radiological examinations at different time intervals. At the beginning, several bacterial strains were evaluated through a proteolytic enzyme activity assay and the highest activity was recorded with the Staphylococcus aureus strain. ZnO-NPs were synthesized with the arc discharge method with an average size of 19.4 nm. The antibacterial activity of ZnO-NPs was investigated and it was revealed that the prepared ZnO-NPs showed a minimum inhibitory concentration of 8 µg/mL against the tested bacterium. The cytotoxicity of the prepared ZnO-NPs was tested in C2C12 myoblast cells, and it was elaborated that CC50 was 344.16 µg/mL. Biceps femoris pyomyositis was induced with a potent strain (Staphylococcus aureus); then, a physiotherapeutic program combined with the prepared ZnO-NPs treatment protocol was applied and evaluated. The combined program claimed antibacterial properties, preventing muscle atrophy, and resulted in the most comparable value of muscle mass

    Toxicity and teratogenicity evaluation of ethanolic extract from Momordica charantia fruit using zebrafish (Danio rerio) embryo model

    Get PDF
    Zebra fish (Danio rerio), a freshwater fish, has become a favoured animal model to assess the teratogenicity effects of various compounds. Momordica charantia is a fruit traditionally used as a functional food to treat various ailments. In the present work, 80% ethanolic extract of M. charantia fruit was investigated for its teratogenicity effects on the zebrafish embryos. The embryos of 12 h post-fertilisation were immersed in the ethanolic extract at various concentrations of 250, 500, 750, 1,000, and 1,250 mg/L prepared in 2% DMSO. Microscopic observation was carried out every 24 h. Results showed an increased mortality rate, and a delayed hatching rate with increasing concentration. Some of the deformities observed included hyperactivity, crooked backbone, reduced pigmentation, awkward positioning, and coagulation at the highest concentration. Probit analysis resulted in 725.90 mg/L as the median lethal concentration (LC50). Chromatographic analysis revealed the presence of propanedioic acid, malic acid, contrunculin-A, glutamine, D-fructose, sorbopyranose, xylitol, galactonic acid, D-mannitol, and mannose. These compounds may contribute to the deformities observed in a concentration-dependent manner. Therefore, M. charantia fruit must be consumed with caution and within the recommended amount

    Correlation of the GC-MS-based metabolite profile of Momordica charantia fruit and its antioxidant activity

    Get PDF
    Momordica charantia or bitter melon (Cucurbitaceae) is a widely consumed edible fruit with strong antioxidant properties. Due to these properties, it has been commercialised by the natural product industries as a coadjutant in the treatment of various ailments attributable to the deleterious effects of oxidants. The present work aimed to evaluate the antioxidant activity of M. charantia fruit extracts made with different compositions of ethanol:water, and to identify the metabolites that are responsible for this activity. To this end, the fruit samples were extracted using six different concentrations of ethanol in water (0, 20, 40, 60, 80, and 100%). Gas chromatography-mass spectrometry (GC-MS) and multivariate data analysis (MVDA) were used to identify significant antioxidants. The 80% ethanol:water extract showed the most significant (p < 0.05) antioxidant activity when tested with the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) antioxidant assays. The multivariate data analysis revealed that the metabolites related to this antioxidant activity were gentiobiose, glucose, galactonic acid, palmitic acid, galactose, mannose, and fructose

    Bridging the gap between molecular and elemental mass spectrometry: Higher energy collisional dissociation (HCD) revealing elemental information

    Get PDF
    Molecular mass spectrometry has been applied to simultaneously obtain molecular and elemental information from metal-containing species. Energy tuning of the higher-energy collision dissociation (HCD) fragmentation cell allows the controlled production of typical peptide fragments or elemental reporter ions informing about the metallic content of the analyzed species. Different instrumental configurations and fragmentation techniques have been tested, and the efficiency extracting the elemental information has been compared. HCD fragmentation operating at very high energy led to the best results. Platinum, lanthanides, and iodine reporter ions from peptides interacting with cisplatin, peptides labeled with lanthanides-MeCAT-IA, and iodinated peptides, respectively, were obtained. The possibility to produce abundant molecular and elemental ions in the same analysis simplifies the correlation between both signals and open pathways in metallomics studies enabling the specific tracking of metal-containing species. The proposed approach has been successfully applied to in solution standards and complex samples. Moreover, interesting preliminary MALDI-imaging experiments have been performed showing similar metal distribution compared to laser ablation (LA)-ICPMS

    Comparative analysis of within-host diversity among vaccinated COVID-19 patients infected with different SARS-CoV-2 variants

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly evolving RNA virus that mutates within hosts and exists as viral quasispecies. Here, we evaluated the within-host diversity among vaccinated and unvaccinated individuals (n = 379) infected with different SARS-CoV-2 Variants of Concern. The majority of samples harbored less than 14 intra-host single-nucleotide variants (iSNVs). A deep analysis revealed a significantly higher intra-host diversity in Omicron samples than in other variants (p value < 0.05). Vaccination status and type had a limited impact on intra-host diversity except for Beta-B.1.315 and Delta-B.1.617.2 vaccinees, who exhibited higher diversity than unvaccinated individuals (p values: <0.0001 and <0.0021, respectively). Three immune-escape mutations were identified: S255F in Delta and R346K and T376A in Omicron-B.1.1.529. The latter 2 mutations were fixed in BA.1 and BA.2 genomes, respectively. Overall, the relatively higher intra-host diversity among vaccinated individuals and the detection of immune-escape mutations, despite being rare, suggest a potential vaccine-induced immune pressure in vaccinated individuals.The authors are grateful for the leadership and assistance provided by the Ministry of Public Health in Qatar, the virology laboratory staff at Hamad Medical Corporation, and Qatar Biobank (QBB) team. This project was funded by Qatar National Research Fund (QNRF; Project number UREP28-164-3-048) and Qatar University (Project number QUCG-BRC-22/23-547). The article processing charges were paid from grant no. QUCG-BRC-2022/23-578
    corecore