15 research outputs found

    Age-related Changes in Bone Marrow Mesenchymal Stromal Cells: A Potential Impact on Osteoporosis and Osteoarthritis Development

    No full text
    Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA

    The regenerative therapies of the ankle degeneration; A focus on multipotential mesenchymal stromal cell application

    Get PDF
    The ankle degeneration ranging from focal osteochondral lesions to osteoarthritis (OA) can cause a total joint function loss. With rising life-expectancy and activity of the patients, various regenerative therapies were introduced aiming to preserve the joint function via the induction of cartilage and bone repair. Here, biological events and mechanical changes of the ankle degeneration were discussed. The regenerative therapies were reviewed versus the standard surgical treatment. We especially focused on the use of multipotential mesenchymal stromal cells (MSCs) highlighting their dual functions of regeneration and cell modulation with the focus on the emerging MSC-based clinical studies. Being at an early step, more basic and clinical research is needed to optimize the applications of all ankle regenerative therapies including MSC-based method

    Human Tumour Immune Evasion via TGF-β Blocks NK Cell Activation but Not Survival Allowing Therapeutic Restoration of Anti-Tumour Activity

    Get PDF
    Immune evasion is now recognized as a key feature of cancer progression. In animal models, the activity of cytotoxic lymphocytes is suppressed in the tumour microenvironment by the immunosuppressive cytokine, Transforming Growth Factor (TGF)-β. Release from TGF-β-mediated inhibition restores anti-tumour immunity, suggesting a therapeutic strategy for human cancer. We demonstrate that human natural killer (NK) cells are inhibited in a TGF-β dependent manner following chronic contact-dependent interactions with tumour cells in vitro. In vivo, NK cell inhibition was localised to the human tumour microenvironment and primary ovarian tumours conferred TGF-β dependent inhibition upon autologous NK cells ex vivo. TGF-β antagonized the interleukin (IL)-15 induced proliferation and gene expression associated with NK cell activation, inhibiting the expression of both NK cell activation receptor molecules and components of the cytotoxic apparatus. Interleukin-15 also promotes NK cell survival and IL-15 excluded the pro-apoptotic transcription factor FOXO3 from the nucleus. However, this IL-15 mediated pathway was unaffected by TGF-β treatment, allowing NK cell survival. This suggested that NK cells in the tumour microenvironment might have their activity restored by TGF-β blockade and both anti-TGF-β antibodies and a small molecule inhibitor of TGF-β signalling restored the effector function of NK cells inhibited by autologous tumour cells. Thus, TGF-β blunts NK cell activation within the human tumour microenvironment but this evasion mechanism can be therapeutically targeted, boosting anti-tumour immunity

    Defective proliferation and osteogenic potential with altered immunoregulatory phenotype of native bone marrow-multipotential stromal cells in atrophic fracture non-union

    Get PDF
    Bone marrow-Multipotential stromal cells (BM-MSCs) are increasingly used to treat complicated fracture healing e.g., non-union. Though, the quality of these autologous cells is not well characterized. We aimed to evaluate bone healing-related capacities of non-union BM-MSCs. Iliac crest-BM was aspirated from long-bone fracture patients with normal healing (U) or non-united (NU). Uncultured (native) CD271highCD45low cells or passage-zero cultured BM-MSCs were analyzed for gene expression levels, and functional assays were conducted using culture-expanded BM-MSCs. Blood samples were analyzed for serum cytokine levels. Uncultured NU-CD271highCD45low cells significantly expressed fewer transcripts of growth factor receptors, EGFR, FGFR1, and FGRF2 than U cells. Significant fewer transcripts of alkaline phosphatase (ALPL), osteocalcin (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were detected in NU-CD271highCD45low cells. Additionally, immunoregulation-related markers were differentially expressed between NU- and U-CD271highCD45low cells. Interestingly, passage-zero NU BM-MSCs showed low expression of immunosuppressive mediators. However, culture-expanded NU and U BM-MSCs exhibited comparable proliferation, osteogenesis, and immunosuppression. Serum cytokine levels were found similar for NU and U groups. Collectively, native NU-BM-MSCs seemed to have low proliferative and osteogenic capacities; therefore, enhancing their quality should be considered for regenerative therapies. Further research on distorted immunoregulatory molecules expression in BM-MSCs could potentially benefit the prediction of complicated fracture healing

    The roles of immune cells in bone healing; what we know, do not know and future perspectives

    Get PDF
    Key events occurring during the bone healing include well-orchestrated and complex interactions between immune cells, multipotential stromal cells (MSCs), osteoblasts and osteoclasts. Through three overlapping phases of this physiological process, innate and adaptive immune cells, cytokines and chemokines have a significant role to play. The aim of the escalating immune response is to achieve an osseous healing in the shortest time and with the least complications facilitating the restoration of function. The uninterrupted progression of these biological events in conjunction with a favourable mechanical environment (stable fracture fixation) remains the hallmark of successful fracture healing. When failure occurs, either the biological environment or the mechanical one could have been disrupted. Not infrequently both may be compromised. Consequently, regenerative treatments involving the use of bone autograft, allograft or synthetic matrices supplemented with MSCs are increasingly used. A better understanding of the bone biology and osteoimmunology can help to improve these evolving cell-therapy based strategies. Herein, an up to date status of the role of immune cells during the different phases of bone healing is presented. Additionally, the known and yet to know events about immune cell interactions with MSCs and osteoblasts and osteoclasts and the therapeutic implications are being discussed

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore