28 research outputs found
Setting intelligent city tiling strategies for urban shading simulations
Assessing accurately the solar potential of all building surfaces in cities, including shading and multiple reflections between buildings, is essential for urban energy modelling. However, since the number of surface interactions and radiation exchanges increase exponentially with the scale of the district, innovative computational strategies are needed, some of which will be introduced in the present work. They should hold the best compromise between result accuracy and computational efficiency, i.e. computational time and memory requirements.
In this study, different approaches that may be used for the computation of urban solar irradiance in large areas are presented. Two concrete urban case studies of different densities have been used to compare and evaluate three different methods: the Perez Sky model, the Simplified Radiosity Algorithm and a new scene tiling method implemented in our urban simulation platform SimStadt, used for feasible estimations on a large scale. To quantify the influence of shading, the new concept of Urban Shading Ratio has been introduced and used for this evaluation process. In high density urban areas, this index may reach 60% for facades and 25% for roofs. Tiles of 500 m width and 200 m overlap are a minimum requirement in this case to compute solar irradiance with an acceptable accuracy. In medium density areas, tiles of 300 m width and 100 m overlap meet perfectly the accuracy requirements. In addition, the solar potential for various solar energy thresholds as well as the monthly variation of the Urban Shading Ratio have been quantified for both case studies, distinguishing between roofs and facades of different orientations
Tempering of water storage tank temperature in hot climates regions using earth water heat exchanger
New model to estimate and evaluate the solar radiation
This research work proposed a new model used to predict the direct, diffuse and global solar flues for clear skies, by making the comparison between the numerical simulation of this model and the climatology measured data of Energetic Laboratory station the Faculty of science of Tetouan city (35.57361 latitude, −5.37528 longitude) in Northern Morocco.
The results indicate that the proposed model can be successfully used to estimate the solar radiation during all the seasons of year for studied position and for considered day, using as input the altitude (degrees), longitude (degrees) and latitude (m)
Multivariable Air-Quality Prediction and Modelling via Hybrid Machine Learning: A Case Study for Craiova, Romania
Inadequate air quality has adverse impacts on human well-being and contributes to the progression of climate change, leading to fluctuations in temperature. Therefore, gaining a localized comprehension of the interplay between climate variations and air pollution holds great significance in alleviating the health repercussions of air pollution. This study uses a holistic approach to make air quality predictions and multivariate modelling. It investigates the associations between meteorological factors, encompassing temperature, relative humidity, air pressure, and three particulate matter concentrations (PM10, PM2.5, and PM1), and the correlation between PM concentrations and noise levels, volatile organic compounds, and carbon dioxide emissions. Five hybrid machine learning models were employed to predict PM concentrations and then the Air Quality Index (AQI). Twelve PM sensors evenly distributed in Craiova City, Romania, provided the dataset for five months (22 September 2021–17 February 2022). The sensors transmitted data each minute. The prediction accuracy of the models was evaluated and the results revealed that, in general, the coefficient of determination (R2) values exceeded 0.96 (interval of confidence is 0.95) and, in most instances, approached 0.99. Relative humidity emerged as the least influential variable on PM concentrations, while the most accurate predictions were achieved by combining pressure with temperature. PM10 (less than 10 µm in diameter) concentrations exhibited a notable correlation with PM2.5 (less than 2.5 µm in diameter) concentrations and a moderate correlation with PM1 (less than 1 µm in diameter). Nevertheless, other findings indicated that PM concentrations were not strongly related to NOISE, CO2, and VOC, and these last variables should be combined with another meteorological variable to enhance the prediction accuracy. Ultimately, this study established novel relationships for predicting PM concentrations and AQI based on the most effective combinations of predictor variables identified