8 research outputs found

    The impact of plasmonic electrodes on the photocarrier extraction of inverted organic bulk heterojunction solar cells

    Get PDF
    Nano-patterning the semiconducting photoactive layer/back electrode interface of organic photovoltaic devices is a widely accepted approach to enhance the power conversion efficiency through the exploitation of numerous photonic and plasmonic effects. Yet, nano-patterning the semiconductor/metal interface leads to intertwined effects that impact the optical as well as the electrical characteristic of solar cells. In this work we aim to disentangle the optical and electrical effects of a nano-structured semiconductor/metal interface on the device performance. For this, we use an inverted bulk heterojunction P3HT:PCBM solar cell structure, where the nano-patterned photoactive layer/back electrode interface is realized by patterning the active layer with sinusoidal grating profiles bearing a periodicity of 300 nm or 400 nm through imprint lithography while varying the photoactive layer thickness (LPAL) between 90 and 400 nm. The optical and electrical device characteristics of nano-patterned solar cells are compared to the characteristics of control devices, featuring a planar photoactive layer/back electrode interface. We find that patterned solar cells show for an enhanced photocurrent generation for a LPAL above 284 nm, which is not observed when using thinner active layer thicknesses. Simulating the optical characteristic of planar and patterned devices through a finite-difference time-domain approach proves for an increased light absorption in presence of a patterned electrode interface, originating from the excitation of propagating surface plasmon and dielectric waveguide modes. Evaluation of the external quantum efficiency characteristic and the voltage dependent charge extraction characteristics of fabricated planar and patterned solar cells reveals, however, that the increased photocurrents of patterned devices do not stem from an optical enhancement but from an improved charge carrier extraction efficiency in the space charge limited extraction regime. Presented findings clearly demonstrate that the improved charge extraction efficiency of patterned solar cells is linked to the periodic surface corrugation of the (back) electrode interface.Peer Reviewe

    High-Performance Phototransistors Based on PDIF-CN2 Solution-Processed Single Fiber and Multifiber Assembly

    Get PDF
    Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm2 V–1 s–1. Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 103 AW–1, and 5 × 103, respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material’s properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer

    Dispositifs et architectures supramoléculaires électroactives à base de graphène

    No full text
    Cette thèse démontre le potentiel d'utilisation du graphène pour la fabrication de transistors à effet de champ à couche mince. Celui-ci est préparé par exfoliation en phase liquide et co-déposé avec un polymère semiconducteur du type n. Cette stratégie montre que le graphène améliore le comportement ambipolaire du polymère et plus particulièrement le transport des trous ce qui renforce l'application des matériaux composites au graphène dans les circuits logiques.Par la même approche de mélange, de nouveaux nanorubans de graphène dispersés en solution, ont été utilisés pour améliorer la performance des dispositifs basés sur un polymère amorphe de type p. Ces nanorubans forment une voie de percolation pour les charges améliorant ainsi la performance des dispositifs dans l'obscurité ainsi que sous illumination. Finalement, les dispositifs photosensibles multifonctionnels ont été examinés par l'introduction de molécules photochromiques avec différents substituants au sein des films semi-conducteurs à base de polymère ou de molécules de petite taille qui ont été trouvés influer la photocommutation.This thesis demonstrates that graphene produced by liquid-phase exfoliation can be co-deposited with a polymerie semiconductor for the fabrication of thin film field-effect transistors. The introduction of graphene to the n-type polymeric matrix enhances not only the electrical characteristics of the devices, but also the ambipolar behavior and the hole transport in particular. This provides a prospective pathway for the application of graphene composites for logic circuits.The same approach of blending was adopted to enhance the electrical characteristics of an amorphous p-type polymer semiconductor by addition of an unprecedented solution processable ultra-narrow graphene nanoribbon. GNRs form percolation pathway for the charges resulting in enhanced deviee performance in daras weil as under illumination therefore paving the way for applications in (opto)electronics.Finally, multifunctional photoresponsive devices were examined by introducing photochromic molecules exposing different substituents into small molecule or polymeric semiconductor films that were found to affect the photoswitching behavior

    Dispositifs et architectures supramoléculaires électroactives à base de graphène

    No full text
    Cette thèse démontre le potentiel d'utilisation du graphène pour la fabrication de transistors à effet de champ à couche mince. Celui-ci est préparé par exfoliation en phase liquide et co-déposé avec un polymère semiconducteur du type n. Cette stratégie montre que le graphène améliore le comportement ambipolaire du polymère et plus particulièrement le transport des trous ce qui renforce l'application des matériaux composites au graphène dans les circuits logiques.Par la même approche de mélange, de nouveaux nanorubans de graphène dispersés en solution, ont été utilisés pour améliorer la performance des dispositifs basés sur un polymère amorphe de type p. Ces nanorubans forment une voie de percolation pour les charges améliorant ainsi la performance des dispositifs dans l'obscurité ainsi que sous illumination. Finalement, les dispositifs photosensibles multifonctionnels ont été examinés par l'introduction de molécules photochromiques avec différents substituants au sein des films semi-conducteurs à base de polymère ou de molécules de petite taille qui ont été trouvés influer la photocommutation.This thesis demonstrates that graphene produced by liquid-phase exfoliation can be co-deposited with a polymerie semiconductor for the fabrication of thin film field-effect transistors. The introduction of graphene to the n-type polymeric matrix enhances not only the electrical characteristics of the devices, but also the ambipolar behavior and the hole transport in particular. This provides a prospective pathway for the application of graphene composites for logic circuits.The same approach of blending was adopted to enhance the electrical characteristics of an amorphous p-type polymer semiconductor by addition of an unprecedented solution processable ultra-narrow graphene nanoribbon. GNRs form percolation pathway for the charges resulting in enhanced deviee performance in daras weil as under illumination therefore paving the way for applications in (opto)electronics.Finally, multifunctional photoresponsive devices were examined by introducing photochromic molecules exposing different substituents into small molecule or polymeric semiconductor films that were found to affect the photoswitching behavior.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Graphene-induced enhancement of n-type mobility in perylenediimide thin films

    No full text
    Organic thin-film transistor transfer characteristics and time-of-flight (TOF) photoconductivity measurements were used to investigate the effect of the addition of liquid-phase exfoliated graphene nanoflakes (GNs) on the electron mobility in thin films of <i>N</i>,<i>N</i>′-bis­(1<i>H</i>,1<i>H</i>-perfluorobutyl)­dicyanoperylenecarboxydiimide (PDIF-CN2). Transfer characteristics measurements reveal that the charge carrier mobility of PDIF-CN2 increases by almost 3 orders of magnitude via blending with GNs. TOF photocurrent measurements confirm that the GNs improve the charge carrier transport in PDIF-CN2. We have found a strong dependence of the TOF-determined electron mobility on the excitation wavelength and obtained a maximum mobility of 0.17 cm<sup>2</sup>/(V s) for charge carriers produced in GN:PDIF-CN2 blends using a photon energy of 5.9 eV. This value is in good agreement with the field-effect mobility of 0.2 cm<sup>2</sup>/(V s) determined from transfer characteristics

    Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene

    Get PDF
    Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and non-oxidized graphene sheets can be produced; among them an inexpensive and scalable method based on liquid-phase exfoliation of graphite (LPE) holds potential for applications in opto-electronics and nanocomposites. Here we have used n-octylbenzene molecules as graphene dispersion-stabilizing agents during the graphite LPE process. We have demonstrated that by tuning the ratio between organic solvents such as N-methyl-2-pyrrolidinone or ortho-dichlorobenzene, and n-octylbenzene molecules, the concentration of exfoliated graphene can be enhanced by 230% as a result of the high affinity of the latter molecules for the basal plane of graphene. The LPE processed graphene dispersions were further deposited onto solid substrates by exploiting a new deposition technique called spincontrolled drop casting, which was shown to produce uniform highly conductive and transparent graphene films

    Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots

    Get PDF
    Ultrasound-induced liquid-phase exfoliation (UILPE) is an established method to produce single- (SLG) and few-layer (FLG) graphene nanosheets starting from graphite as a precursor. In this paper we investigate the effect of the ultrasonication power in the UILPE process carried out in either <i>N</i>-methyl-2-pyrrolidone (NMP) or <i>ortho</i>-dichlorobenzene (<i>o</i>-DCB). Our experimental results reveal that while the SLGs/FLGs concentration of the NMP dispersions is independent of the power of the ultrasonic bath during the UILPE process, in <i>o</i>-DCB it decreases as the ultrasonication power increases. Moreover, the ultrasonication power has a strong influence on the lateral size of the exfoliated SLGs/FLGs nanosheets in <i>o</i>-DCB. In particular, when UILPE is carried out at ∼600 W, we obtain dispersions composed of graphene nanosheets with a lateral size of 180 nm, whereas at higher power (∼1000 W) we produce graphene nanodots (GNDs) with an average diameter of ∼17 nm. The latter nanostructures exhibit a strong and almost excitation-independent photoluminescence emission in the UV/deep-blue region of the electromagnetic spectrum arising from the GNDs’ intrinsic states and a less intense (and strongly excitation wavelength dependent) emission in the green/red region attributed to defect states. Notably, we also observe visible emission with near-infrared excitation at 850 and 900 nm, a fingerprint of the presence of up-conversion processes. Overall, our results highlight the crucial importance of the solvent choice for the UILPE process, which under controlled experimental conditions allows the fine-tuning of the morphological properties, such as lateral size and thickness, of the graphene nanosheets toward the realization of luminescent GNDs
    corecore