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ABSTRACT:  

Here we describe the fabrication of organic phototransistors based on either single or multi-

fibers integrated in three-terminal devices. These self-assembled fibers have been produced by 

solvent-induced precipitation of an air stable and solution-processable perylene diimide 

derivative, i.e. PDIF-CN2. The opto-electronic properties of these devices were compared to 

devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber 

devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-

films, exceeding 2 cm2V-1s-1. Such an efficient charge transport is the result of strong 

intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of 

structural defects. The improved crystallinity allows efficient collection of photogenerated 

Frenkel excitons which results in the highest reported responsivity (R) for single-fiber PDI-based 

phototransistors, and photosensitivity (P) exceeding 2 × 103 AW-1, and 5 × 103, respectively. 

These findings provide unambiguous evidence for the key role played by the high degree of 

order at the supramolecular level to leverage the material’s properties towards the fabrication of 

light-sensitive organic field-effect transistors combining a good operational stability, high 

responsivity and photosensitivity. Our results show also that the air-stability performances are 

superior in devices where highly crystalline supramolecularly engineered architectures serve as 

the active layer.  



 

1. INTRODUCTION 

The fabrication and optimization of organic field-effect transistors (OFETs) have been the 

subject of an intense research endeavor during the last decade because such devices represent 

key elements for low-cost flexible electronics including radiofrequency identification (RFID) 

tags,1-7 integrated circuits (ICs) for logic and memory chips, smart cards and sensors.8-14 

Organic-based electronics can play an important role also in other applications including 

electronic bar codes or active matrix elements for displays,15-16 light-emitting diodes,17-18 and 

photovoltaics19.  

      Organic phototransistors, i.e. OFETs in which an incident light is used in addition to a gate 

field to modulate the charge-carrier density inside the channel, have many advantages over their 

inorganic counterparts, such as the tunability of their optoelectronic properties via the molecular 

design and their possibility to be assembled on non-planar supports opening perspectives towards 

their flexible thus wearable applications.20-29 Low-dimensional organic architectures such as 

crystalline micro/nanowire,30-38 microribbon39 and quantum dot40-41 structures have showed high 

photosensitivity and high charge carrier properties.  Among organic semiconducting molecules 

used as active components in efficient phototransistors, perylene di-imide (PDI) derivatives are 

particularly suitable because of their characteristic absorption in the visible region combined 

with the capacity to transport electrons.42-53 One of the major limitations of organic transistors, 

especially those based on n-type systems, is their air sensitivity. To overcome such a limitation, 

we have focused our attention on air-stable n-type perylene di-imide derivative, i.e. N, N’-1H, 

1H-perfluorobutyl-dicyano perylene diimide (PDIF-CN2) (Figure 1), which is known to form 

highly crystalline fibers by solvent-induced precipitation (SIP), being a simple solution-

processable method to produce high-performing crystalline structures with respect to those that 

 



 

are vapor-grown. Such self-assembled fibers exhibit a much higher degree of crystallinity when 

compared to spin-coated thin-films obtained from the same molecule (Figure S11). Selected-area 

electronic-diffraction (SAED) studies on PDIF-CN2 single fibers deposited on SiO2 performed 

previously in our group54 confirmed that molecules self-assemble in an edge-on orientation on 

the basal plane of the surface with the fluoroalkyl chains embedded in-between the aromatic 

cores and the SiO2 dielectric. Different types of architectures based on PDIF-CN2 have shown 

extremely high field-effect mobilities qualifying this system as reference n-type semiconductor 

for organic electronics.55-60  

In this paper we report on the integration of various types of PDIF-CN2 architectures, 

including single fibers, multiple fibers and spin-coated films, in three-terminal devices while 

evaluating the influence of the different interfaces, i.e. metal/semiconductor and 

dielectric/semiconductor, on the electrical performances. In addition, we have carried out an 

exhaustive study of the light responsive properties of these different PDIF-CN2 architectures 

making it possible to elucidate the relationship between molecular order and photoresponsivity. 

 

2. EXPERIMENTAL SECTION 

  PDIF-CN2 is dissolved in chloroform (99, 0-99, 4% GC) in a concentration of 2 mg/ml. The 

solutions are heated at 50°C until the molecules are completely dissolved. We have fabricated 

transistors in two configurations, i.e. bottom-contact-bottom-gate and top-contact-bottom-gate 

configuration. Highly doped n-type silicon wafers were used as substrate for the organic OFETs. 

The thermally-grown SiO2 layers (230 nm) have a unit area capacitance (Ci) of 15 nFcm-2. 

Micro-lithographed 40 nm thick gold source and drain electrodes were patterned on the dielectric 

substrate. SiO2 substrates are protected by a photoresist layer that is washed off prior to use. The 



 

substrates should be extremely pure since impurities can act as charge carrier traps; because of 

this reason they were cleaned with acetone (95% GC) and isopropanol (99.7 % GC) in an 

ultrasonic bath (20 minutes in each solvent) followed by a gentle drying under nitrogen gas. 

After that, the substrate surface was treated with UV/Ozone cleaning and functionalized with 

HMDS self-assembled monolayers by spin-coating 100 µl HMDS solutions (0.47 mM) onto the 

substrate surface for 60 seconds at 1500 rpm, followed by thermal annealing at 100 °C for 1 hour. 

Alternatively, octadecyltrichlorosilane (OTS) SAMs were grown: in this case the substrates were 

immersed into a 10 mM solution of OTS in anhydrous toluene and annealed at 60 °C for 30 

minutes; after that, the substrates were left for 12 hours, washed with anhydrous toluene and 

dried in the spin-coater (4000 rpm, 60 seconds), and finally annealed at 60 °C for 1 hour. 

Afterwards, the Au source-drain electrode surface was functionalized with chemisorbed 

undecanethiol (C11H23-SH) SAMs. The presence of such SAM on Au surface lowers the metal 

work function by rendering it closer to the LUMO energy level of the PDIF-CN2 which amounts 

to -4.5 eV. OFET substrates were immersed in a 1 mM solution of undecanethiol in ethanol for 

12 hours in order to enable the SAMs formation onto the electrodes. The substrates were then 

washed with copious amounts of absolute ethanol to remove the physisorbed undecanethiol 

molecules from the dielectric and electrode surfaces.61 The PDIF-CN2 was spin-coated on the 

dielectric surfaces by applying a 100 µl drop of PDIF-CN2 solution in chloroform onto the 

substrate and spin it at 1500 RPM for 60 seconds inside the glove box. The device was then 

annealed at 60°C for 1 hour. On the other hand, in the SIP process, 150 µl of PDIF-CN2 solution 

in chloroform was injected rapidly in 950 µl of ethanol (CH3OH, 99,9% GLC). Within a period 

of 15 minutes the fibers were formed in solution and precipitated on the bottom of vials. The 



 

fibers were then transferred to the surface by dropping multiple times 20 µl until the full surface 

coverage was reached. 

  To improve the physical contact of multifiber assemblies with source and drain electrodes, we 

have also fabricated devices in top-contact configuration with the same gate insulator surface 

treatments (OTS self-assembled monolayers) used for bottom-contact devices. The fibers were 

deposited by SIP on SiO2 surfaces, then we evaporated on the top source and drain gold 

electrodes through a shadow mask inside a vacuum chamber at pressure of 10-6 mbar. The 

evaporation rate was maintained at ~0.02-0.04 nm/s. In this way 50 nm thick films top Au 

electrodes were grown. The evaporation was done by using Plassys ME300B thermal evaporator.  

  Single-fiber devices were fabricated using a top-contact bottom-gate geometry. Before 

depositing the single fiber, the SiO2 surface was functionalized with OTS to minimize interfacial 

trapping sites for charges during device operation. SIP fibers were cast onto the functionalized 

SiO2 substrates followed by the deposition of 40-nm-thick Au electrodes by thermal evaporation. 

  The current-voltage (I-V) characteristics of all devices were measured inside the glove box in 

nitrogen atmosphere. The air-stability tests performed under illumination were carried out 

outside the glove box at controlled room temperature and humidity (T = 22 °C, RH% ~25) by 

contacting the source, drain and gate electrodes and applying different voltages using a Cascade 

Microtech M150 probe station with dual channel Keithley 2636A source-meter and associated 

software. Phototransistors devices were characterized in dark and under light irradiation from the 

top using a Leica LED1000 OLED ring (white light, 5.06 mWcm-2) and an Optometric LLC 

TLS-25 M tunable light source with a monochromatic beam, light irradiation was performed at 

525 nm wavelength at either 4.84 mWcm-2 or 7.24 µWcm-2 light intensity.  

  The electron mobility was extracted in the saturation regime according to the equation: 



 

  

 

 

 

where ID is the current measured between source and drain electrodes, VGS the potential 

difference measured between the voltage probes, L their distance, W the channel width and Ci the 

capacitance per unit area of the insulator layer. 

 

3. RESULTS AND DISCUSSION 

  The development of high performance OFETs requires the electrodes to be bridged by highly 

crystalline semiconducting architectures forming continuous percolation pathways for the 

transport of charges. Transistors fabricated on untreated SiO2 exhibited poor charge transport 

characteristics for both multifiber assemblies and spin-coated devices (see below). In order to 

promote the packing of spin-coated molecules while studying the assembly of the PDIF-CN2 

fibers at the surface, the SiO2 dielectric substrate was modified with UV-Ozone treatment and 

functionalized with either hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) self-

assembled monolayers.  Moreover, the chemisorption of undecanethiols (C11H23-SH) on Au 

electrodes guaranteed simultaneously an improved hydrophobic nature of the metallic surface to 

promote physisorption of the organic semiconductor, thus ensuring a good physical contact, and 

an optimization of the injection of charges from the electrodes into the LUMO of the 

semiconductor by decreasing the Au electrode work function of ca. 250 meV. 

  Table 1 summarizes the different field-effect mobility values extracted from saturation 

regime as well as threshold voltage (Vth) for bottom-contact bottom-gate devices based on multi-
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fiber structures. It reveals that the best mobilities are measured on OFET devices which 

underwent OTS or HMDS treatment followed by chemisorption of undecanethiol SAMs on the 

Au electrodes. Noteworthy, our results show that the charge injection from the functionalized 

gold electrodes leads to negligible enhancements in both mobility and Vth. The devices with 

untreated SiO2 displayed very low mobility values on the order of 10-6 cm2V-1s-1 for both 

multifiber and spin-coated devices. Ideally, the dielectric surface should provide a favorable 

environment to allow the generation of π-π stacked architectures in order to form highly ordered 

organic films. The chemisorption of hydrophobic SAMs on SiO2 reduces the surface energy of 

SiO2 while decreasing the trapping induced by the Si–OH groups, giving a more favorable 

environment for the organic semiconductor molecules deposition, especially for spin-coated 

films62.  We recorded a significant improvement in the curve shape, yield of working devices as 

well as mobility (on the order of 10-3 cm2V-1s-1) and threshold voltage when the SiO2 was treated 

with OTS or HMDS which ensured reduced inter-fiber aggregation and a better interface with 

the dielectric surface (see Figure 2). 

  Figure 3 portrays the output and transfer curves of PDIF-CN2 spin-coated thin-films, multi- 

and single-fiber devices. Single-fibers based FET revealed mobility values as high as 2.3 cm2V-

1s-1 (average mobility 0.9 cm2V-1s-1) and low threshold voltage values around -10 V for single-

fiber FET as reported in Table 2 and Figure 4. Such performances provide unambiguous 

evidence for an enhanced charge transport through crystalline fibers, albeit non-uniform, 63 when 

compared to the amorphous spin-coated films (annealed at 60 °C for 1 hour) which featured an 

average mobility of 2.8 × 10-2 cm2V-1s-1. On the other hand, multifiber FETs displayed field-

effect mobilities of ca. 3.8 × 10-3 cm2V-1s-1, thus being nearly three orders of magnitude lower 

than those measured in single-fiber FETs. Such a discrepancy can be explained by considering 



 

the fiber-to-fiber grain boundaries: in multifiber assemblies, charge carriers may hop from one 

fiber to the neighboring one(s) in order to be collected at the electrode; this process strongly 

limits the transport. This observation has been confirmed by probing the electron charge 

transport between two different interconnected fibers as displayed in Figure S1a. The field-

effect mobility in the saturation region (see the corresponding output-curve in Figure S1c), is 

~1.7 × 10-3 cm2V-1s-1 which compares well with those extracted from multifiber devices. To 

further explain such low mobility, we investigated the charge transport through crossing (and 

therefore overlapping) fibers (see Figure S1b and S1d). This exemplary experiment revealed 

that in some cases the gate effect in the device can be negligible. Such a behavior can be ascribed 

to a low and ineffective electrostatic coupling owing to the presence of (two or more) fibers 

sitting underneath the measured fiber (the one connected to Au gold electrodes) which separate it 

from the gate electric field. 

In addition, the effect of a mild thermal annealing was tested on both thin-film and multifiber 

FETs in order to improve the degree of crystallinity within the sample. For spin-coated devices, 

annealing at 60 °C for 1 hour led to an increase in their electrical performances as shown in 

Table S1. 

  With the aim of gaining greater insight into the charge injection at the 

electrode/semiconductor interface in multifiber-based devices, the top-contact configuration was 

implemented by thermally evaporating Au source and drain electrodes on pre-assembled fibers 

physisorbed on a treated SiO2 surface (top-contact bottom-gate configuration). Unfortunately, the 

use of top electrodes does not allow the electrode functionalization with thiolated molecules, to 

guarantee optimal metal/semiconductor interface energetics. The deposition of gold electrodes 

on the top of the fibers led to non-functioning devices (see Figure S2) owing to an uneven and 



 

not continuous top gold layer connecting the fibers (fibers' average thickness being within few 

hundreds of nm). Unfortunately, the scenario was unchanged even upon evaporation of gold 

layers with a thickness up to 150 nm (see Figure S3). 

Figure S4 shows different assembly of fibers on treated and untreated SiO2 surface. It reveals 

a propensity to form single layers of fibers on SiO2 surfaces treated with OTS and HMDS. 

Morphological and charge transport characterization demonstrated that the hydrophobic nature of 

the substrate surface has a major impact on the final response of the devices. In order to verify 

both reliability and reproducibility of the OFET devices based on multifiber assemblies a large 

number of devices (>100) were prepared on both HMDS-/OTS-treated and untreated silicon 

dioxide substrates. All fabricated OFETs exhibit the same performances, proving a good 

reproducibility of the Solvent Induced Precipitation process used to make them. 

  The light responsive nature of the electrical characteristics of multifiber-based assemblies 

compared with those of thin-film and single-fiber devices were quantified by determining the 

photoresponsivity R and the photoswitching ratio, i.e. photosensitivity, P (photocurrent/dark-

current) of the devices. This has been accomplished by measuring the I-V characteristics of the 

transistors under white and monochromatic light irradiation. The R and P values are defined as:  
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current measured in dark conditions. The R and P values were plotted as a function of VG for the 

thin-film, single fiber and multifiber-based devices. 

  Figure 5 displays the difference in transfer and output characteristics for (a, b) multifiber-

based OPTs, (c,d) thin-film OPTs, and (e,f) single-fiber OPTs in dark and under illumination 

with white light (λ > 400 nm, 5.06 mWcm-2). It reveals a general increase of the drain current in 

the IDS-VDS and IDS-VG curves upon irradiation as a result of photogenerated charge carriers. In 

particular, under light irradiation, the off-current of the single-fiber OPT, multifiber OPT and 

thin-film OPT were significantly higher indicating that the minimum conductivity measurable in 

the film (σmin) increased owing to the additional contribution of photogenerated charges. In 

addition, the threshold voltage (Vth) shifted towards more negative voltages (n-doping), implying 

the easier turn-on of the device. This could be ascribed to the more efficient filling of trap sites 

by the photogenerated extra charge component.  

  Light responsivity (R) and photocurrent/dark-current ratio (P) are important parameters for 

investigating the capacity of a material to respond to light stimuli. Figure 6 shows that when 

illuminated with white light the multifiber OPTs exhibit a maximum R value of 200 AW-1 with a 

corresponding P = 3.3, whereas thin-film-OPTs display Rmax = 24 AW-1 and Pmax = 0.6 (these 

values were reported from devices with the same channel length for both thin-film and multifiber 

OPTs). For single-fiber OPTs devices, a maximum R value of 2189 AW-1 at a gate voltage of 60 

V with a corresponding P value of 5001 were recorded under white light irradiation. In Figure 

S5, the same single-fiber OPT device (in Figure 6) was also irradiated using green light (4.84 

mWcm-2). The calculated R and P values were comparable to those obtained under white light 

irradiation, amounting ca. to 2593 AW-1 and 4560, respectively. 



 

Under white light illumination all investigated PDI-based single-fiber OPTs exhibited 

responsivity and photoswitching ratio both exceeding 103 indicating a pronounced increase of the 

signal upon irradiation. The multifiber OPTs exhibited responsivity being lower than that of 

single-fiber OPTs yet one order of magnitude higher compared to those of thin-film based-OPTs. 

The increase in R in the case of single fibers compared to the thin-film devices can be ascribed to 

the improved molecular order within the fibers which enables a better transport of the 

photogenerated carriers to the electrodes. Conversely, the diffusion of the generated Frenkel 

excitons towards the electrodes is more impeded in the multifiber devices compared to that in 

single-fiber devices owing to the energetically unfavored fiber-to-fiber energy transfer. The 

hopping mechanism of excitons in organic semiconductors is generally considered to be a 

dipole-dipole resonance energy transfer known as the Förster mechanism64-65. Such mechanism 

is based on short-range interactions which vanish as 1/d6 where d is the distance between the 

molecular entities. In our case, the intermolecular π-π distance is ca. 3.3 Å which is far shorter 

than two fluorinated alkyl chains in a row. Hence, we ascribe the poor photoresponse of 

multifiber devices to the poor fiber-to-fiber exciton transport. 

 Significantly, the photoresponsivity R and photocurrent/dark current ratio P values that we 

obtained in the present study concerning single-fiber OPTs are, to the best of our knowledge, the 

highest reported in literature for perylene di-imide single crystal-based organic 

phototransistors.48-50 For instance, the maximum R reported for BPE-PTCDI NW-OPTs, amounts 

to ca. 1400 AW-1 at a gate voltage of 100 V and photoswitching current of 4960 for top-contact 

devices irradiated with green light, corresponding to a darkness charge carrier mobility of 1.13 

cm2V-1s-1.50 The photoresponsivity of PTCDI-C8 (perylene derivative) single nanowires-OPTs 

was about 7 AW-1.49 Yu et al. demonstrated that the light response increased by increasing the 



 

charge carrier mobility devices,50 which was observed in previous reports on organic 

phototransistors32, 35, 39 and confirmed in our case, where the highest R was obtained from OFET 

device exhibiting high charge mobility (2.3 cm2V-1s-1).  This suggests that PDIF-CN2 single-fiber 

OPTs are a promising candidate to achieve high light responsivity in electronic devices while 

keeping high electron mobility.   

  The transfer characteristics of multifiber OPTs devices obtained at VDS = +60 V in dark and 

under white light illumination are compared in Figure 7 (a,b). In the both cases the devices were 

prepared in the same way using the HMDS treatment of SiO2, the only difference being the 

channel length, L = 10 µm and 2.5 µm for (a) and (b), respectively. The light responsivity (R) 

and photocurrent/dark-current ratio (P) were calculated employing the transfer curves presented 

in Figure 7a and 7b and their values are reported in the same figure (panels 7c and 7d). The 

channel length dependence of R and P parameters is of particular interest, because it permits a 

better understanding of the factors contributing to the PDI device photoresponse. 

Figure 7 (a, b) shows the transfer characteristic curves of OPTs with channel lengths of 10 µm. 

It reveals the largest enhancement in the drain current (IDS) under light irradiation due to the 

larger absorption of incoming photons and exhibited a photoswitching ratio P = 180. These value 

is 20-fold greater than the one detected in device with the shorter channel length of L = 2.5 µm 

(P = 9) (see Figure 7c and 7d). On the other hand, the photoresponsivity R is one order of 

magnitude greater in the OPT devices with L = 2.5 µm. Based on these results and others 

obtained on thin-film devices revealing a similar behavior, we conclude that the photoswitching 

ratio P is independent from the channel length of PDIF-CN2 based devices, but it is dependent 

upon the incident optical power density (see Figure S6). However, the photoresponsivity R is 

strongly dependent on the channel length for both multifiber- and thin-film OPTs. 



 

  Figure S7 shows the difference in drain current in dark vs. white light irradiation for 

multifiber and thin-film devices measured in dry nitrogen (inside the glovebox) and in a 

controlled ambient air (T = 22 °C, RH ~25%). It reveals an increase in drain current upon light 

irradiation for multifiber-based devices by almost one order of magnitude, whereas a slight 

increase in drain current was observed for thin film-based OFET in a few devices while for the 

others a decrease in drain current were observed in dark and under white light irradiation, as a 

result of the semiconductor layer instability in air environment. The Table S2 in supporting 

information shows different mobility and threshold voltage values extracted from the saturation 

regime of FET devices measured in dry nitrogen and ambient air, ∆µ = (µ dry nitrogen / µ ambient air) % 

measures the change between the mobility values in dry nitrogen and ambient air given in 

percent of the mobility in dry nitrogen and ∆Vth = Vth (dry nitrogen) – Vth(ambient air) which is the threshold 

voltage difference between dry nitrogen and ambient air. 

The mobility values reported in Table S2 reveal that FETs based on multifiber assemblies are 

not affected by the exposure to oxygen, as evidenced by the unchanged mobility values 

measured in dry nitrogen and ambient air. For spin-coated film based devices, the electron 

mobility measured in ambient air drops down by almost a factor of 4 compared with that of the 

same device measured in dry nitrogen (∆µ = 0.09). Based on these results, we can conclude that 

PDIF-CN2 air stability is strongly influenced by the molecular packing and the morphology of 

the semiconductor films. For multifiber assemblies the devices electrical characterizations were 

almost stable in ambient air; such result may be explained by the presence of tight packing 

between PDI cores, providing a kinetic barrier to the diffusion of oxygen into the channel.66 

Piliego et al. have reported on PDIF-CN2 based devices that the decrease in mobility cannot be 

attributed to semiconductor chemical degradation, but to the physisorption of atmospheric 



 

gases67 at the material grain boundaries which will act as electron traps68  Zschieschang et al. 

showed that PDIF-CN2 vapor deposited thin-films feature a mild mobility reduction from dry 

nitrogen to ambient air (∆µ = 0.97 %), which was ascribed to the electrochemical instability of 

the semiconductor radical anion via the following equation:  

O2 + 2H2O + 4e-            4HO- 

  The presence of both oxygen (O2) and water (H2O) molecules in air environment leads to the 

formation of HO- groups that act as charge traps, causing a slow decrease in carrier mobility.69 A 

similar observation on electron mobility degradation in ambient air was previously reported by 

Morpurgo et al. on PDIF-CN2 vapor-deposited single crystals70 Concerning the threshold voltage 

values (see Table S2), a shift towards more positive values was observed in the case of 

multifiber-based devices. According to Kumaki et al. this positive shift is due to the water 

molecules which induced a deprotonation of Si-OH groups present on the dielectric surface not 

passivated with OTS self-assembled monolayers, forming charge traps following the reaction: 

SiOH + H2O à SiO- + H3O+.71 On the other hand, a negative shift was observed for FETs based 

on spin-coated thin films measured in ambient air, indicating an electron doping of the 

semiconductor layer.  

  Our findings, reported in Table S3 and S4, correlate µ and Vth and their relative variation, ∆µ, 

and ∆Vth, in dark and under white light irradiation for FET devices upon 1-day exposure to air 

conditions for both multifiber assemblies and spin-coated films. We can notice a threshold 

voltage shift towards negative values upon light irradiation for both multifiber and spin-coated 

devices. A decrease in electron mobility was also observed between light and dark measured 

both under dry nitrogen (∆µ = 0.96) and ambient air (∆µ = 0.76) environment for spin-coated 



 

based devices, whereas no difference in electron mobility for multifibers based device was 

monitored, thus confirming the air stable nature of packed PDIF-CN2 fibers. 

 

 

4. CONCLUSIONS 

  In summary, we have provided evidence for the influence of the order at the 

supramolecular level in the semiconducting material on the performance of field-effect 

transistors supported on SiO2 substrates. In particular, the comparison of single fibers 

with high crystallinity fabricated from solution processable method (SIP) and multifiber 

assemblies with spin-coated thin films revealed that the former outperform by exhibiting 

good reproducibility and field-effect mobilities up to 2 cm2s-1V-1 when the SiO2 is treated 

with OTS self-assembled monolayers. Such outstanding field-effect mobility can be 

ascribed to intermolecular close packing arrangement within the crystalline fibers, the 

absence of grain boundaries and the presence of an ordered fluorocarbon layer at the 

periphery of the edge-on molecules ensuring the isolation of the aromatic cores from the 

dielectric substrate, thereby reducing the dipolar disorder, overall providing an almost 

ideal situation for charge transport. This mobility value is approaching those reported by 

Morpurgo et al. in vacuum vapor deposited single crystal devices with lengths of few 

millimeters.70 Spin-coated films showed mobilities six orders of magnitude lower as a 

result of the poor order at the supramolecular level within the films. On the other hand, 

the multifibers showed mobilities of ca. 10-3 cm2s-1V-1. Its discrepancy when compared to 

single fibers devices can be attributed to the necessity of charges to hop between adjacent 

fibers before reaching the metallic electrode.  



 

  We also showed that PDIF-CN2 based single-fiber OPTs exhibited higher responsivity 

R (> 5 × 103 AW-1), and photoswitching ratio P (> 2 × 103) compared with that of thin-

film based OPTs, which are to date the highest reported R and P obtained from PDI single 

crystal OPTs. This result provides evidence that also the device photoresponse depends 

on the molecular order and an efficient transport of the photogenerated carriers towards 

the electrodes is a requirement towards high light response. Overall, our SIP processed 

PDIF-CN2 single fibers do not require any vapor growth and are highly conducting as 

well as photosensitive architectures for fundamental studies on light-matter interaction 

and for applications in high performance opto-electronic devices. 

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Summary of multifiber-based FET parameters measured in saturation regime. [W = 10 
mm, L = 2.5 µm]. 
 
 
 
 

 
Single-fiber FET 

 

 Vth (V) µ (cm2V-1s-1) 

OTS SAMs -10 ± 3 0.91 ± 0.04 
 

Table 2. Summary of single-fiber top-contact bottom-gate FET parameters measured in 

saturation regime. [Number of samples > 10]. 

  

 
Multifiber-based FET 

 

devices treatment Vth (V) µ (cm2V-1s-1) 

Non-treated SiO2 38 ± 6 (4.3 ± 0.1) × 10-6 

UV-Ozone cleaning 30 ± 9 (1.1 ± 0.1) × 10-3 

UV-Ozone/Thiol 35 ± 5 (1.2 ± 0.3) × 10-3 

HMDS SAMs -14 ± 4 (2.7 ± 0.9) × 10-3 

HMDS/Thiol SAMs -15 ± 2 (3.0 ± 0.7) × 10-3 

OTS SAMs -12 ± 4 (2.5 ± 0.4) × 10-3 

OTS/Thiol SAMs -18 ± 6 (3.4 ± 0.5) × 10-3 



 

 

 

 
 
 
 
 
 
 
 
 

Figure 1. Chemical structure of the organic semiconductor PDIF-CN2 

 
 

 

 

 

 
                                     (a)                                         (b) 

Figure 2. Bright field (a) and fluorescent (b) optical microscopy images of SIP fibers 

deposited on OTS treated SiO2. Insets: Zoom out. 
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Figure 3. Transfer characteristics at VDS = 60 V of PDIF-CN2 treated with OTS based on (a) 

spin-coated thin-film (L = 5 µm and W = 10 mm), (b) multifiber assembly (L = 5 µm and W = 

10 mm), and (c) single fiber (L = 14 µm and W = 1.4 µm). Insets: output characteristics of each 

device type.   
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Figure 4. SEM image (a) and output characteristic (b) of OTS treated device based on single 

fiber. The yellow lines in the SEM images serve as a guide to the eyes and indicate the source 

and drain electrode edges. (L = 14 µm and W = 1.2 µm measured from SEM image). 
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Figure 5. Comparison of (a,c,e) output and (b,d,f) transfer characteristics at VDS = 60 V for (a,b) 

multi-fiber OPT, (c,d) thin-film OPT, and (e,f) single-fiber OPT measured in dark and under 

white light irradiation. Channel length (a-d) L= 10 µm, (e-f) L = 14 µm. Ewhite light = 5.06 mWcm-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Variation of responsivity (R) and photosensitivity (P) with VG at VD = 60 V for (a) 

multifiber OPT (L = 2.5 µm), (b) thin-film OPT (L = 2.5 µm), and (c) single-fiber OPT (L = 14 

µm) under white light irradiation, for devices treated with OTS. Ewhite light = 5.06 mWcm-2. 
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Figure 7. Transfer characteristics of multifiber OPT devices in dark and under white light 

irradiation treated with HMDS with different channel length (a) L = 10 µm and (b) L = 2.5 µm, 

and their responsivity (R) and photosensitivity, P, with VGS at VDS = +60 V for (c) L = 10 µm and 

(d) L = 2.5 µm. Ewhite light = 5.06 mWcm-2. 
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Additional results, including electrical characterization obtained from the extraction of the major 

device parameters, Atomic Force Microscopy and Optical Microscopy characterizations of the 

fibers as well as optical absorption spectra in solution and Scanning Electron Microscopy were 

performed in order to provide a complete morphological and energetical overview of this 

molecular system. This material is available free of charge via the Internet at http://pubs.acs.org.   
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