300 research outputs found

    A semantic feature for human motion retrieval

    Get PDF
    With the explosive growth of motion capture data, it becomes very imperative in animation production to have an efficient search engine to retrieve motions from large motion repository. However, because of the high dimension of data space and complexity of matching methods, most of the existing approaches cannot return the result in real time. This paper proposes a high level semantic feature in a low dimensional space to represent the essential characteristic of different motion classes. On the basis of the statistic training of Gauss Mixture Model, this feature can effectively achieve motion matching on both global clip level and local frame level. Experiment results show that our approach can retrieve similar motions with rankings from large motion database in real-time and also can make motion annotation automatically on the fly. Copyright © 2013 John Wiley & Sons, Ltd

    Adding New Tasks to a Single Network with Weight Transformations using Binary Masks

    Full text link
    Visual recognition algorithms are required today to exhibit adaptive abilities. Given a deep model trained on a specific, given task, it would be highly desirable to be able to adapt incrementally to new tasks, preserving scalability as the number of new tasks increases, while at the same time avoiding catastrophic forgetting issues. Recent work has shown that masking the internal weights of a given original conv-net through learned binary variables is a promising strategy. We build upon this intuition and take into account more elaborated affine transformations of the convolutional weights that include learned binary masks. We show that with our generalization it is possible to achieve significantly higher levels of adaptation to new tasks, enabling the approach to compete with fine tuning strategies by requiring slightly more than 1 bit per network parameter per additional task. Experiments on two popular benchmarks showcase the power of our approach, that achieves the new state of the art on the Visual Decathlon Challenge

    Inner Space Preserving Generative Pose Machine

    Full text link
    Image-based generative methods, such as generative adversarial networks (GANs) have already been able to generate realistic images with much context control, specially when they are conditioned. However, most successful frameworks share a common procedure which performs an image-to-image translation with pose of figures in the image untouched. When the objective is reposing a figure in an image while preserving the rest of the image, the state-of-the-art mainly assumes a single rigid body with simple background and limited pose shift, which can hardly be extended to the images under normal settings. In this paper, we introduce an image "inner space" preserving model that assigns an interpretable low-dimensional pose descriptor (LDPD) to an articulated figure in the image. Figure reposing is then generated by passing the LDPD and the original image through multi-stage augmented hourglass networks in a conditional GAN structure, called inner space preserving generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human figures, which are highly articulated with versatile variations. Test of a state-of-the-art pose estimator on our reposed dataset gave an accuracy over 80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to preserve the background with high accuracy while reasonably recovering the area blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine

    Deep Shape Matching

    Full text link
    We cast shape matching as metric learning with convolutional networks. We break the end-to-end process of image representation into two parts. Firstly, well established efficient methods are chosen to turn the images into edge maps. Secondly, the network is trained with edge maps of landmark images, which are automatically obtained by a structure-from-motion pipeline. The learned representation is evaluated on a range of different tasks, providing improvements on challenging cases of domain generalization, generic sketch-based image retrieval or its fine-grained counterpart. In contrast to other methods that learn a different model per task, object category, or domain, we use the same network throughout all our experiments, achieving state-of-the-art results in multiple benchmarks.Comment: ECCV 201

    The clinical effectiveness and cost-effectiveness of point-of-care tests (CoaguChek system, INRatio2 PT/INR monitor and ProTime Microcoagulation system) for the self-monitoring of the coagulation status of people receiving long-term vitamin K antagonist therapy, compared with standard UK practice : systematic review and economic evaluation

    Get PDF
    Funding The National Institute for Health Research Health Technology Assessment programme.Peer reviewedPublisher PD

    "Ein ächtes antipoeticum":Untersuchungen zur poetologischen Verwendung des Horns in der deutschen Literatur

    Full text link
    Die Geschichte des Horns in der deutschen Literatur reicht bis in das Althochdeutsche zurück: Im Muspilli ertönt das Horn zum Weltgericht. Vom Olifant im Rolandslied über das Horns Oberons und Des Knaben Wunderhorn bis zur Verwendung in Wagners Opern spielt das Instrument eine wichtige Rolle, insbesondere in Werken der Romantik. Mit seinem besonderen Klang und seiner Fähigkeit des Echospiels ist es bestens geeignet Vorstellungen von Jenseitigkeit zu erzeugen. Das Horn vermag aber auch antipoetisch und als Instrument der Apokalypse zu wirken. Die vorliegende Arbeit zeigt an ausgewählten Beispielen den vielfältigen Bedeutungskosmos in der literarischen Verwendung und untersucht den spezifischen semantischen Gehalt des Horn-Motivs für das jeweilige Werk. Dabei wird auch die Auflösung des einst festen Bedeutungsspektrums hin zu einer freieren Verwendung des Horn-Motivs im literaturgeschichtlichen Verlauf beleuchtet

    Free-hand sketch synthesis with deformable stroke models

    Get PDF
    We present a generative model which can automatically summarize the stroke composition of free-hand sketches of a given category. When our model is fit to a collection of sketches with similar poses, it discovers and learns the structure and appearance of a set of coherent parts, with each part represented by a group of strokes. It represents both consistent (topology) as well as diverse aspects (structure and appearance variations) of each sketch category. Key to the success of our model are important insights learned from a comprehensive study performed on human stroke data. By fitting this model to images, we are able to synthesize visually similar and pleasant free-hand sketches

    Classification of Two Comic Books based on Convolutional Neural Networks

    Get PDF
    Unphotographic images are the powerful representations described various situations. Thus, understanding intellectual products such as comics and picture books is one of the important topics in the field of artificial intelligence. Hence, stepwise analysis of a comic story, i.e., features of a part of the image, information features, features relating to continuous scene etc., was pursued. Especially, the length and each scene of four-scene comics are limited so as to ensure a clear interpretation of the contents.In this study, as the first step in this direction, the problem to classify two four-scene comics by the same artists were focused as the example. Several classifiers were constructed by utilizing a Convolutional Neural Network(CNN), and the results of classification by a human annotator and by a computational method were compared.From these experiments, we have clearly shown that CNN is efficient way to classify unphotographic gray scaled images and found that characteristic features of images to classify incorrectly.</p
    corecore