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Abstract. In this paper we propose an approach for multi-modal image
retrieval in multi-labelled images. A multi-modal deep network archi-
tecture is formulated to jointly model sketches and text as input query
modalities into a common embedding space, which is then further aligned
with the image feature space. Our architecture also relies on a salient ob-
ject detection through a supervised LSTM-based visual attention model
learned from convolutional features. Both the alignment between the
queries and the image and the supervision of the attention on the im-
ages are obtained by generalizing the Hungarian Algorithm using dif-
ferent loss functions. This permits encoding the object-based features
and its alignment with the query irrespective of the availability of the
co-occurrence of different objects in the training set. We validate the
performance of our approach on standard single/multi-object datasets,
showing state-of-the art performance in every dataset.

1 Introduction

Content Based Image Retrieval (CBIR) has been for decades one of the prevalent
topics in Computer Vision. Rapidly the field has evolved towards a more human-
centered view. Thus, cross-media image retrieval systems emerged, allowing users
to express the queries in a more natural way using different input modalities,
such as text, speech, or sketches.

Text-based image retrieval (TBIR) is the most widely established modality,
due to the simplicity of matching text queries with manually assigned keywords
describing the image content. Human annotation of large databases of images
is time consuming and may lack completeness. Thus, current trends explore
TBIR systems that could bridge the semantic gap with queries based on natural
language descriptions of the image content. Despite its wider expressiveness there
can still be circumstances where text cannot be adequate to portray the query
and it can be difficult to establish the link between text and image contents.

With the advent of touch screen and pen input devices, sketches have emerged
as an alternative mode to provide the query that can deal with the limitations
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Fig. 1: In conventional SBIR and TBIR, during the training phase, respectively a sketch
and a text representation is mapped to the image representation of corresponding class.
Querying images with multiple labels has been explored within the TBIR domain [18]
(as shown in the last row of Conventional TBIR column). Querying images with mul-
tiple objects using multi-modal queries provides convenience in searching, but it is an
extremely challenging task and has not been addressed yet.

of text and images. Sketches are a natural way to conceptualize visual objects in
terms of simplified shapes and their pose, however they have a few constraints.
Sketching needs some idea and ability in drawing shapes that can make some
users uncomfortable with this modality. Thus a SBIR (Sketch Based Image Re-
trieval) framework can not replace conventional text based retrieval which has
its own benefits (e.g. utilization of keyboard versus stylus). Thus both modalities
can complement each other. Although numerous methodologies for SBIR have
been proposed, none of them allow to utilize text as an extra or complementary
query modality. Thus, the first motivation for the work presented in this paper
is to propose a multi-modal image retrieval approach where the query can be
either sketch or text or both. To make the different modalities compatible, a
common semantic embedding space is defined.

Another noteworthy constraint of most existing image retrieval pipelines is
that they can only manage situations where just a single salient object is signif-
icant – see Figure 1. This motivates the second challenge of the present work,
i.e. allowing to express queries that can refer to multiple objects. In this way,
the proposed model provides more expressiveness to the search language since
users can construct queries consisting of different concepts that are aligned to
the salient objects of the target images. To the best of our understanding, none
of the SBIR techniques can deal with multi-object scenarios. Although some of
the strategies [7] based on textual queries can recover relevant images containing
multiple objects.

Consequently, we propose a unified multi-modal and multi-object image re-
trieval (MMIR) framework, which permits to retrieve images containing multiple
objects, expressing the query using text, sketches or a combination of both. The
framework is based on a deep network architecture in which multi-modality
is addressed by projecting word2vec representations of sketches and text into
a common semantic space aligned with the image feature space. To deal with
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multi-object search we integrate an LSTM-based visual attention model that
learns to discover relevant zones of the image. To match the set of attention
glimpses with the set of queries we propose a Hungarian loss that finds the best
correspondence between both sets. The Hungarian loss is also used to introduce
supervision while training the visual attention model by guiding the result of
the attention towards object bounding boxes.

The main contributions of this work are: (1) The proposal of a common
semantic space among text and sketches, obtained through word2vec represen-
tation of both input modalities, and aligned with the image feature space; (2) A
visual attention model that automatically detects salient objects from an image,
that is trained in a supervised way in order to minimize the assignment cost
between attention output and object bounding boxes.

The rest of the paper is organized as follows: in Section 2, we review the rele-
vant state-of-the-art. Section 3 describes in detail our proposed cross-modal/multi-
object image retrieval framework. In Section 4, we describe the experimental
framework and present the results of the experiments. Finally, Section 5 draws
the conclusions and outlines the future directions.

2 Related Work

In this section we review image retrieval using text – text based image retrieval
(TBIR) – and sketches – sketch based image retrieval (SBIR). Subsequently, as
our method detects object as part of multi-object image retrieval by means of
an attention procedure, we also discuss about the state of the art on attention
models.

Advances in feature learning have recently provided effective feature represen-
tations for different modalities such as text [4,20], images [6,22], and hand-drawn
sketches [43,29] which have been shown to greatly improve the retrieval perfor-
mance. A common approach when dealing with multi-modal data is to learn a
joint embedding to map all modalities into a common latent space [25]. However,
in multi-modal image retrieval [35], the complementary use of text and sketch
to express the queries has not been much explored [2].

TBIR, dating back to the late 1970s, has evolved from just a keyword-based
task to a more challenging task based on natural language descriptions (e.g.,
sentences and paragraphs) [10]. Queries in the form of sentences rather than
keywords refer not only to object categorical information but also interactions,
such as spatial relationships between objects [12,39]. In our work we keep text
in the simple form of keywords, but we permit to express objects relationships
as combination of several text or sketch based queries. Recently, projecting text
into the word2vec space has been shown to achieve a high level of accuracy in
TBIR [5]. Thus, we also rely on word2vec to represent text queries, but we also
extend this idea to obtain a semantic embedding of sketches into the word2vec
space.

SBIR is one of the alternative ways of searching and overcoming the limi-
tations imposed by TBIR systems. Apart from images, sketches have been suc-
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cessfully used for 3D shape retrieval purpose as well [44,38]. Since sketch is more
close to the semantic representation, it tends to help retrieving target results
in the user mind from a semantic perspective [37]. Here, the main challenge is
to bridge the domain gap between sketches and natural images. In literature,
methods addressing this issue can be grouped into two categories: (1) hand-
crafted methods, (2) deep learning-based methods. The hand-crafted features
(e.g. SIFT [16]), gradient field HOG (GF-HOG [9]) are extracted from both the
sketches and edge maps of natural images and further clustered using ’Bag-of-
Words’ (BoW), histogram of edge local orientations (S-HELO) [27] or Learned
Key Shapes (LKS) [28]). One of the major limitations for such methods is the
difficulty to match the edge maps to non-aligned sketches with large variations
and ambiguity. To address the domain shift issue, convolutional neural networks
(CNNs) methods [11] have recently been used to learn domain-transformable
features from sketches and images with an end-to-end framework [29,43]. In our
work, we address these semantic gap by directly projecting sketches to a semantic
space using word2vec, that is further aligned with the image space.

The current deep SBIR methods tend to perform well only in a single object
scenario with a simple contour shape on a clean background [15,29,43]. Recently,
there have been attempts to apply deep learning to multi-label image recogni-
tion task [41,36,34]. Razavian et al. [24] applies off-the-shelf features extracted
from a deep network pre-trained on ImageNet [26] for multi-label image classi-
fication. Wang et al. [34] utilize RNNs to learn a joint image-label embedding
to characterize the semantic label dependency as well as the image-label rel-
evance. Some works exploit object proposals to only focus on the informative
regions, which effectively eliminate the influences of the non-object areas and
thus demonstrate significant improvement in multi-label image recognition task
[36,41]. More specifically, Wei et al. [36] propose a Hypotheses-CNN-Pooling
framework to aggregate the label scores of each specific object hypotheses to
achieve the final multi-label predictions. Yang et al. [41], formulate the multi-
label image recognition problem as a multi-class multi-instance learning problem
to incorporate local information and enhance the discriminative ability of the
features by encoding the label view information. As an alternative we propose to
use an attention model to discover image regions relevant to each of the objects.

Visual attention model has gained a lot of interest recently. In image cap-
tioning [40] visual attention assists the generation of descriptive captions. [42]
targeted attention on a set of concepts extracted from the image to generate cap-
tions. In visual question answering [31,45] several models have been proposed
which attend to image regions or questions when generating an answer. Concur-
rently, [1] analyzed the consistency between human and deep network attention
in visual question answering. Our goal differs in that we are interested in how
attention on salient objects can be aligned with the queried object. We use the
attention correction proposed in [14] to create a supervised attention for salient
object detection. A Hungarian Loss [32] function is proposed to match the salient
objects with the queries projected to a semantic embedding space.
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3 Multi-modal and Multi-object Image Retrieval
In this section we describe the proposed methodology (see the architecture in Fig-
ure 2). The query (text and sketch) is embedded into a common semantic space.
For each image in the image database, an LSTM based attention map generator
finds several attention maps (one at every time step of LSTM) based on a CNN
feature map and the previous attention map. These attention maps are trained
in a supervised way and can be thought of as the relative importance of the
different areas of the image in order to get the feature representation of the dif-
ferent salient objects in the image. For every attention map, the CNN features
are weighted and averaged to get the final feature representation at every step.
Thus, we obtain a set of features corresponding to different salient objects in the
image. On the other hand, we allow for multiple queries each of them embedded
in the semantic space. Consequently we have a set of query features and a set
of image features that have to be matched and aligned. To compute a distance
between these two sets, we use a Hungarian loss that gives the minimum cost
assignment between them. Cosine distance between query features and object
features is used to compute the individual cost between each pair query/object.
In the following sections we introduce the details of each of the components of
this global architecture.
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Fig. 2: Architecture of the proposed unified MMIR framework. The semantic query
network (in purple) and the image model (in orange) are aligned using the Hungarian
loss (in blue). Right side of the figure elaborates supervised attention map generator
(in green). The Hungarian loss for attention (in blue) computes the assignments in test
time and computes the assignments and loss during training.

3.1 Semantic Query Embedding
For successful retrieval of images given text or sketch as query, a proper em-
bedding space must be defined, where both text and sketch can be directly



6 S. Dey et al.

compared to the image with a distance measure. In the case of sketches this has
been achieved by learning a global feature using triplet loss [29] or similarity
loss [23]. For text, either one hot vector encoding based on a fixed vocabulary or
some semantic embedding mapping words into a continuous vector space can be
used. In our case, we chose to use a semantic embedding as it gives the oppor-
tunity to use generic words as query and the model is not restricted to a certain
vocabulary of words. For the combination of sketch and text, in [2] two different
subspaces were proposed, one between text and image another between sketch
and image. However, end to end training of different subspaces is difficult and
unstable.

We argue that a better option is to find a subspace where all three modal-
ities can be compared. Therefore, we propose a semantic space to embed the
queries, capturing the common properties of text and sketch. In particular, we
use word2vec [19] representation to obtain this semantic space. For the text we
use directly the word2vec embedding of the words. Sketch images are regressed
to the word2vec space by using a CNN based regressor. In the following we
provide the details of each embedding.

For word encoding, we have used the standard word2vec [19] representation,
which is pre-trained on the set of words from the English Wikipedia3. This word
representation produces a feature vector of 1000 dimensions.

For the regression of sketch images into semantic space, we adopt a modified
version of the VGG-16 network [30]. We modified the top fully connected layer
module to accommodate the output vector dimension to that of word2vec. The
entire network was then trained as a regression framework with cosine embedding
loss to project the sketches in a space parallel to word2vec. For doing so, we used
the sketch images from the Sketchy dataset [29] to produce the corresponding
word2vec representation of the class name. Once trained, we used the network
for obtaining the sketch representation mapped into the word2vec space.

3.2 Supervised Attention for Image Representation

With the goal of retrieving images relevant to a set of query objects, our aim is
to extract a set of feature vectors representing salient objects from a particular
image. Another possible alternative would be to encode the image into a global
signature and aggregate multiple queries into a single representation making
retrieval a nearest neighbour problem in this feature space. However we argue
that this approach has severe limitations. Firstly, to find a suitable global image
representation that can encode the presence of multiple objects we should train
with a well curated dataset containing possible combination of different objects.
Such a dataset would be huge and training would be complex and take a lot of
time. Secondly, although aggregation of queries could be solved in various ways,
there is not an easy way to encode their relative position, which can be crucial
to match with that of image. In [18] this problem is dealt with by using a spatial
query box and then learning the relative position by using a conventional CNN.
3 https://www.wikipedia.org/

https://www.wikipedia.org/
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However, the position has to be provided by user which can limit the usability of
the query interface. Another possibility would be to use a state-of-the-art object
detector to detect object and compute the corresponding feature vectors for each
object. However, most object detection pipelines assume rectangular objects and
do not consider the image context around them. In addition, such an approach
would eventually make the pipeline hard to train end-to-end due to different loss
functions.

With all this in mind, we propose a different alternative by using a more
flexible method based on an LSTM together with an attention model to detect
multiple objects (in the form of mask) one at every step. The input to the atten-
tion model is a set of features extracted with a conventional CNN corresponding
to a spatial grid in which every point represents an area in the image (through
its receptive field). In a nutshell, our LSTM based object detector is trained to
output one attention map at every step which depends on the previous attention
map and the CNN features. The LSTM remembers the attended regions through
the hidden vector, which prohibits it to attend the same object multiple times.

The soft attention mechanism was first used in computer vision by [40] where
the attention model is not supervised in a sense that there is no loss calculated
directly on the attention weights. Thus, the attention mechanism is free to attend
anywhere, being only guided by the final output, which is calculated from the
result of the attended features. However this model can be extended by applying
a direct supervision i.e by directing the model ”where to attend” [14]. In this
work we used a similar framework but we did the following changes. Firstly, we
changed the cross entropy loss between the target and the generated attention
map and the softmax over the grid locations by a sigmoid cross entropy loss
and a sigmoid activation function to generate a binary map over the grid. This
follows from the hypothesis that that every grid location is independent and can
be a potential region to attend. Secondly, in our case the order in which the
different targets (corresponding to objects) are attended is not relevant. Thus,
we need a way to match the unordered set of targets with the unordered set of
generated attention maps. We solve this by finding minimum cost between the
two sets by using a generalized Hungarian loss. We outline the details of the
formulation for this matching later.

More formally, the attention model computes n different attention maps and
corresponding image representations for a single image using an LSTM net-
work. The input to the LSTM is a set of features extracted from a pre-trained
CNN-based feature extractor resulting in L vectors, {a1, ...,aL},ai ∈ Rd that
correspond to L spatial locations of an image. The LSTM generates n attention
maps, {αt ∈ [0, 1]L, t = 1, . . . , n} and their corresponding image representations:
{xt ∈ Rd, t = 1, . . . , n}. Our LSTM model can be visualized in Figure 2. At
every step, the input the LSTM takes as intput the hidden representation ĥ, the
local features given by {a1, ...,aL} and the attention map generated at previous
time step. To generate the attention map the hidden vector is passed through
an MLP layer followed by sigmoid activation, which provides attention maps
that can be interpreted as the importance of every spatial location for the de-
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tection/retrieval of a certain object. Considering αil , for l = 1, 2, . . . , L to be
the weights on the L spatial grids for the ith step, the final image representation
for ith attention map is the weighted average of image features over all spatial
locations, xi =

∑L
l=1 αilal

3.3 Hungarian Loss

In our framework we have to match two unordered sets of elements keeping
two constraints. On one hand, we have m queries (represented as points in the
regressed word2vec space) and n (where n > m) different image representations
of every single image corresponding to the different attention computed through
the LSTM. For retrieval we have to find the best matching between these two
sets. On the other hand, in order to train in a supervised way the attention
model we have to align the set of bounding boxes of the salient objects with the
result of the n steps of the LSTM.

We have solved both problems using the same framework formulating them
as a bi-partite graph matching problem, and using a variation of the Hungarian
loss introduced in [32]. In this way, we compute the loss as the minimum cost
assignment between every pair of elements in both sets. Given a cost matrix
between every pair of elements, the computation of the minimum cost assignment
is done by the Hungarian algorithm [21] in polynomial time.

We use two different cost functions for each of the two problems. The cost
between the query features q and the computed image features x is given by the
cosine dissimilarity between the query and the feature.

Csim(qi,xj) = 1− cos(qi,xj)

For supervising the attention model, we have used the binary cross entropy
as a cost function between each of the ground truth masks β and each of the
generated attention maps α.

Cattn(αi, βj) = −(αi log(βj) + (1− αi) log(1− βj))

4 Experimental Results

4.1 Implementation Details

We have implemented our method on PyTorch framework. For all experiments,
the image features are extracted using the feature module of the pre-trained
VGG-16 network model. This feature representation is particularly appropriate
for our task as it can effectively capture high-level semantic information from
the images and at the same time it naturally retains most spatial information.
For sketches, we used the same VGG-16 model but replacing the last layer in
the classifier module with a specific layer to accommodate the regression of
the features extracted from the sketch to the word2vec space. The output is
a feature vector of 1000 dimensions, which is then mapped to a common joint
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neural embedding space. Its jointly trained by freezing the feature extraction
part on both the query and the image side. The salient object detector based
on supervised attention model was implemented using the mask generated from
the bounding boxes of the objects in MS-COCO images. In case of the Sketchy
database, we used the bounding box of the sketches in the image mask. This
was possible because the dataset was designed for fine grained SBIR. We first
compare the proposed method with several previous SBIR methods for single
object, including hand-crafted features: GF-HOG [8], S-HELO [27], LSK [28];
and deep learning based: Siamese CNN [23], Sketch-a-Net (SaN) [43], GN Triplet
[29], 3D shape [33], DSH [15] as shown in the Table 2. For all the methods
mentioned above we follow the same protocol and evaluation metrics as in [15].
In the case of [15] we used the trained model for 128-bits provided in the author’s
github repository.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3: Images of (a) person with pizza and (g) person with surfboard; (b)-(f) and
(h)-(l) are respective n (n = 5) attention maps for image (a) and (b) obtained by our
LSTM-based image model.

4.2 Datasets

Sketchy Dataset [29]: This is a large collection of sketch-photo pairs. The dataset
consists of images belonging to 125 different classes, each having 100 images. Af-
ter having these total 125×100 = 12, 500 images, crowed workers were employed
for sketching the objects that appear in these 12, 500 images, which resulted in
75, 471 sketches.

TU-Berlin Dataset [3]: The TU-Berlin dataset contains 250 categories with a
total of 20, 000 sketches. We also utilize the extended set provided in [15], with
natural images corresponding to the sketch classes with a total size of 204, 489.

MS-COCO Dataset [13]: Originally it is a large scale object detection, segmen-
tation, and captioning dataset. We use the MS.COCO dataset for constructing
a database of images containing multiple objects. As the label number for each
image also varies considerably, rendering MS-COCO is even more challenging.
We use the class names of the Sketchy dataset and take all possible combinations
by taking two, three, four, five class names. Afterwards, we download the images
belonging to these combined classes, and use them for training and retrieval. Few
combined classes having less than 10 images are eliminated, leaving 125 number
of combined classes for the experiment with at least 900 images.
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rabbit

person

chair book

person hand bag

bowl table

Fig. 4: Qualitative results obtained by our proposed method: eight example queries
consisting texts as well as sketches with their top-10 retrieval results on the Sketchy,
TU-Berlin and MS-COCO dataset. Red boxes indicates false positives. (Best viewed
in pdf)

4.3 Ablation Analysis

In this subsection, we perform some experiments to carefully analyze the contri-
bution of the critical components of our proposed model. For this study we used
single object retrieval from the Sketchy [29] using sketch as a query modality. In
an effort to evaluate each of our contributions, we trained every variation of the
system with exactly the same training data.

In the first row of Table 1 we show the results that we obtain if we replace
the VGG-16 network that regresses the word2vec representation of sketches by
another VGG-16 network that just outputs a one-hot encoding representation
of the word that represents the class of the sketch. The sketch features obtained
from the one-hot encoding produce reasonable retrieval performances, but the
figures are still clearly lower than our original design in the last row of the table
(12% less in mAP). We speculate this is because hidden representations and
knowledge within the trained neural network is able to store more information
by correlating the data points that are semantically close.

We also introduce two other variations by replacing the supervised attention
module with a global average pooling of image features (second row of Table 1)
and a standard attention model without mask level supervision (third row) in
order to show the impact of the supervised attention model in detecting salient
objects. The comparison reveals the fact that supervised attended regions have
a relevant impact on the results and therefore, are capable of discovering the dis-
criminating regions, which facilitates the task of multi-label image classification.
The global pooling basically provides no segregated object information and fails
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Fig. 5: t-SNE visualization of our image and sketch embeddings of 10 represen-
tative categories from the Sketchy dataset. After embedding the images as well
as the sketches to the common space by our model, natural images and sketch
queries from most of the categories are almost scattered into the same clusters.
(Best viewed in pdf)

to generalize knowledge from the seen objects together to the unseen ones. The
general attention is also suboptimal in exploring the object features individually.

Description Sketchy
Regressed vector → one hot vector 0.688
Supervised attention → global pooling 0.726
Supervised attention → general attention 0.754

Full model 0.809
Table 1: Ablation analysis

Finally, in Figure 6(d), we elucidate t-SNE [17] visualization of the image
features and sketch features corresponding to 10 different categories. We can see
that the distributions of the features in both domains are very similar reflecting
that the network is capable to align features among both modalities.

4.4 Results and Discussions

Single Object: In Table 2, we report the comparison of mAP and precision@200
over all SBIR methods on two datasets. Generally, deep learning-based methods
can achieve much better performance than handcrafted methods and the results
on Sketchy are higher than those on TU-Berlin since the data in Sketchy is rel-
atively simpler with fewer categories. The corresponding precision-recall (P-R)
curves for both the datasets are illustrated in Figure 6(a) and (b). Our method
leads with significant improvements over the best-performing comparison meth-
ods on the two datasets, respectively in both mAP and precision@200. We argue
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Methods
Sketchy TU-Berlin

mAP Precision mAP Precision
@ 200 @ 200

GF-HOG [8] 0.135 0.167 0.114 0.158
S-HELO [27] 0.161 0.181 0.121 0.153

LKS [28] 0.193 0.231 0.151 0.172

Siamese CNN [23] 0.587 0.745 0.489 0.623
SaN [43] 0.208 0.292 0.178 0.182

GN Triplet [29] 0.651 0.797 0.597 0.782
3D shape [33] 0.161 0.181 0.123 0.147

DSH [15] 0.620 0.694 0.556 0.743

Proposed (Sketch) 0.809 0.886 0.653 0.796
Proposed (Text) 0.802 0.881 0.641 0.727

Proposed (Sketch + Text) 0.803 0.882 0.645 0.735
Table 2: Image retrieval performance

that this is because our architecture is specifically designed to handle visual
alignment of the query to the images using the Hungarian Loss.
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Fig. 6: Precision-recall curves obtained by different methods on (a) Sketchy, (b) TU-
Berlin, (c) MS-COCO datasets. (Best viewed in pdf)

Multiple Objects: For retrieving images with multiple objects, we have considered
the MS-COCO dataset as mentioned above. Two existing methods are consid-
ered for comparison: SSCC [18] and UA [2]. However, it is worth mentioning that
none of the above two methods works with multi-modal queries; as they allow
retrieving images with multiple queries, we slightly modified these methods to
accept multi-modal queries. The multi-modal multi-object image retrieval mean
average precision (mAP@all) of our proposed method and the two baselines
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are reported in Table 3 and the corresponding precision-recall (P-R) curves are
shown in Figure 6(c). The performance margins between our proposed method
and the selected state-of-the-art methods are significant, suggesting the existing
cross-modal image retrieval methods fail to handle the multi-modal multi-object
image retrieval task. SSCC [18] attains relatively better results. A possible reason
for this is allowance of multiple queries and a relatively simple model for query
processing. However, this method is designed only for text modality and also
deals with semantic constraints, which can be a reason of the worse performance
than our proposed system. Some qualitative results of retrieving images using
multi-modal and multi-object queries are Figure 4. It can be seen that our pro-
posed method is able to produce acceptable retrieval results. Albeit some false
alarms are produced, they mostly have some visual similarity with the actual
retrieval.

Methods
MS-COCO

mAP Precision
@ 200

SSCC [18] 0.623 0.667

UA [2] 0.354 0.413

Proposed (Sketch) 0.697 0.753
Proposed (Text) 0.696 0.751

Proposed (Sketch + Text) 0.693 0.749
Table 3: Multiple objects

5 Conclusions and Future Work

In this paper, we have proposed a common neural network model for sketch as
well as text based image retrieval. One of the most important advantages of
our framework is that it allows to retrieve images queried by terms of multiple
modalities (text and sketch). We have designed an image attention mechanism
based on LSTM that allows to put attention on the specific zones of the images
depending on the inter related objects which usually co-occur in nature. This has
been learned by our model from the images in the training set. We have tested
our proposed framework on the challenging Sketchy dataset for single object
retrieval and on a collection of images from the COCO dataset for multiple object
retrieval. Furthermore, we have compared our experimental results with three
state-of-the-art methods. We have found that our method performs satisfactorily
better than the considered state-of-the-art methods on all the two datasets with
some cases of failure with justifiable reasons. For the future we plan to investigate
on more efficient training strategies, as few shot learning approaches that learn
from a small amount of training data in human-centered scenarios that allow
users to search in their own databases in a more efficient and effortless manner.
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