146 research outputs found

    NB-LRR regulation and function in Arabidopsis

    Get PDF
    Across multi-cellular eukaryotes, Nucleotide-binding, Leucine Rich Repeat (NB-LRR) proteins mediate cell death and responses to pathogens. NB-LRR protein function influences many topics in human health, including vaccine development and autoimmune disorders. For plants, NB-LRR proteins mediate defense responses to a variety of pathogens, such as viruses, bacteria, and fungi. Recent reports estimate that approximately 20-40% of worldwide agricultural production is reduced by plant pathogens and pests. Therefore, basic findings in NB-LRR biology impact topics ranging from biomedical research to crop protection. In the first chapter of my dissertation, I will provide an overview of the genetic and biochemical regulation of NB-LRR proteins and describe how NB-LRR proteins perform signal transduction. My dissertation research characterizes the NB-LRR protein RPM1 in the model plant Arabidopsis. Arabidopsis can be infected by the bacterial pathogen Pseudomonas syringae. P. syringae pathogenesis is largely caused by secretion of proteins called effectors into host cells. Two P. syringae effectors, AvrB and AvrRpm1, induce RPM1-mediated defense responses. In chapter 2, I will describe Arabidopsis mutants that lose recognition of AvrRpm1 (lra) because of epigenetic silencing of RPM1. In chapter 3, I will evaluate RPM1 regulation by nucleotide exchange and through interaction with the host factor RIN4. In chapter 4, I characterize the NB-LRR protein TAO1, which perceives AvrB and additively functions with RPM1. In conclusion, my dissertation describes the regulation and function of the NB-LRR protein RPM1 in order to learn new aspects of NB-LRR biology

    NB-LRR proteins: pairs, pieces, perception, partners, and pathways

    Get PDF
    In plants, many of the innate immune receptors or disease resistance (R) proteins contain a NB-LRR (Nucleotide-binding site, Leucine-rich repeat) structure. The recent findings regarding NB-LRR signaling are summarized in this article. An emerging theme is that two NB-LRRs can function together to mediate disease resistance against pathogen isolates. Also, recent results delineate which NB-LRR protein fragments are sufficient to initiate defense signaling. Importantly, distinct fragments of different NB-LRRs are sufficient for function. Finally, we describe the new roles of accessory proteins and downstream host genes in NB-LRR signaling

    Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB

    Get PDF
    The type III effector protein encoded by avirulence gene B (AvrB) is delivered into plant cells by pathogenic strains of Pseudomonas syringae. There, it localizes to the plasma membrane and triggers immunity mediated by the Arabidopsis coiled-coil (CC)-nucleotide binding (NB)-leucine-rich repeat (LRR) disease resistance protein RPM1. The sequence unrelated type III effector avirulence protein encoded by avirulence gene Rpm1 (AvrRpm1) also activates RPM1. AvrB contributes to virulence after delivery from P. syringae in leaves of susceptible soybean plants, and AvrRpm1 does the same in Arabidopsis rpm1 plants. Conditional overexpression of AvrB in rpm1 plants results in leaf chlorosis. In a genetic screen for mutants that lack AvrB-dependent chlorosis in an rpm1 background, we isolated TAO1 (target of AvrB operation), which encodes a Toll-IL-1 receptor (TIR)-NB-LRR disease resistance protein. In rpm1 plants, TAO1 function results in the expression of the pathogenesis-related protein 1 (PR-1) gene, suggestive of a defense response. In RPM1 plants, TAO1 contributes to disease resistance in response to Pto (P. syringae pathovars tomato) DC3000(avrB), but not against Pto DC3000(avrRpm1). The tao1–5 mutant allele, a stop mutation in the LRR domain of TAO1, posttranscriptionally suppresses RPM1 accumulation. These data provide evidence of genetically separable disease resistance responses to AvrB and AvrRpm1 in Arabidopsis. AvrB activates both RPM1, a CC-NB-LRR protein, and TAO1, a TIR-NB-LRR protein. These NB-LRR proteins then act additively to generate a full disease resistance response to P. syringae expressing this type III effector

    Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein

    Get PDF
    Pathogen recognition first occurs at the plasma membrane, where receptor-like kinases perceive pathogen-derived molecules and initiate immune responses. To abrogate this immune response, pathogens evolved effector proteins that act as virulence factors, often following delivery to the host cell. Plants evolved intracellular receptors, known as NOD-like receptors (NLRs), to detect effectors, thereby ensuring activation of effector-triggered immunity. However, despite their importance in immunity, the molecular mechanisms underlying effector recognition and subsequent immune activation by membrane-localized NLRs remain to be fully elucidated. Our analyses reveal the importance of and need for self-association and the coordinated interplay of specific domains and conserved residues for NLR activity. This could provide strategies for crop improvement, contributing to effective, environmentally friendly, and sustainable solutions for future agriculture

    Timeline of health care–associated infections and pathogens after burn injuries

    Get PDF
    Infections are an important cause of morbidity and mortality after burn injuries. Here, we describe the timeline of infections and pathogens after burns

    The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana

    Get PDF
    Background and Aims: The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. Methods: The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Key Results: Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. Conclusions: There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8

    The stoichiometric interaction of the Hsp90-Sgt1-Rar1 complex by CD and SRCD spectroscopy

    Get PDF
    While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer) or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule) and an asymmetric complex (Sgt11-Hsp902-Rar11). The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat) in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD)-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation

    Innate Immune Cell Recovery Is Positively Regulated by NLRP12 during Emergency Hematopoiesis

    Get PDF
    With enhanced concerns of terrorist attacks, dual exposure to radiation and thermal combined injury (RCI) has become a real threat with devastating immunosuppression. NLRP12, a member of the NOD-like receptor family, is expressed in myeloid and bone marrow cells and has been implicated as a checkpoint regulator of inflammatory cytokines as well as an inflammasome activator. We show that NLRP12 has a profound impact on hematopoietic recovery during RCI by serving as a checkpoint of TNF signaling and preventing hematopoietic apoptosis. Using a mouse model of RCI, increased NLRP12 expression was detected in target tissues. Nlrp12−/− mice exhibited significantly greater mortality, inability to fight bacterial infection, heightened levels of pro-inflammatory cytokines, overt granulocyte/monocyte progenitor cell apoptosis and failure to reconstitute peripheral myeloid populations. Anti-TNF antibody administration improved peripheral immune recovery. These data suggest that NLRP12 is essential for survival after RCI by regulating myelopoiesis and immune reconstitution

    Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes

    Get PDF
    Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells
    corecore