61 research outputs found

    Discovery of 42 genome-wide significant loci associated with dyslexia

    Full text link
    Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Full text link
    Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)-GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 102^{-2}, threshold = 2.5 × 102^{-2}). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 102^{-2}). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 104^{-4}). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

    Full text link
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits. Keywords: genome-wide association study; language; meta-analysis; readin

    Generalized Structured Component Analysis in candidate gene association studies: applications and limitations

    Get PDF
    Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing. Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9. Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects. Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis

    Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort.

    Get PDF
    Polymorphisms in the apolipoprotein E (APOE) gene have been associated with individual differences in cognition, brain structure and brain function. For example, the ε4 allele has been associated with cognitive and brain impairment in old age and increased risk of dementia, while the ε2 allele has been claimed to be neuroprotective. According to the 'antagonistic pleiotropy' hypothesis, these polymorphisms have different effects across the lifespan, with ε4, for example, postulated to confer benefits on cognitive and brain functions earlier in life. In this stage 2 of the Registered Report - https://osf.io/bufc4, we report the results from the cognitive and brain measures in the Cambridge Centre for Ageing and Neuroscience cohort (www.cam-can.org). We investigated the antagonistic pleiotropy hypothesis by testing for allele-by-age interactions in approximately 600 people across the adult lifespan (18-88 years), on six outcome variables related to cognition, brain structure and brain function (namely, fluid intelligence, verbal memory, hippocampal grey-matter volume, mean diffusion within white matter and resting-state connectivity measured by both functional magnetic resonance imaging and magnetoencephalography). We found no evidence to support the antagonistic pleiotropy hypothesis. Indeed, Bayes factors supported the null hypothesis in all cases, except for the (linear) interaction between age and possession of the ε4 allele on fluid intelligence, for which the evidence for faster decline in older ages was ambiguous. Overall, these pre-registered analyses question the antagonistic pleiotropy of APOE polymorphisms, at least in healthy adults

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Funding: Support for the Toronto project was provided by grants from the Canadian Institutes of Health Research (MOP-133440 and PJT-180419). K.P. was supported by the Hospital for Sick Children Research Training Program. E.E. and S.E.F. are supported by the Max Planck Society.Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations.Publisher PDFPeer reviewe

    Author Correction: Discovery of 42 genome-wide significant loci associated with dyslexia

    Full text link
    Correction to: Nature Genetics https://doi.org/10.1038/s41588-022-01192-y. Published online 20 October 2022. In the version of this article originally published, a paragraph was omitted in the Methods section, reading “Genomic control. Top SNPs are reported from the more conservative GWAS results adjusted for genomic control (Fig. 1, Extended Data Figs. 1–4, and Supplementary Tables 1, 2, 9 and 10), whereas downstream analyses (including gene-set analysis, enrichment and heritability partitioning, genetic correlations, polygenic prediction, candidate gene replication) are based on GWAS results without genomic control.” The paragraph has now been included in the HTML and PDF versions of the article

    Discovery of 42 genome-wide significant loci associated with dyslexia

    Get PDF
    Funding: EE, GA, BM, BSP, CF and SEF are supported by the Max Planck Society (Germany). The Chinese Reading Study was supported by grants from the National Natural Science Foundation of China Youth Project (Grant No. 61807023), the Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (Grant No. 19YJC190023 and 17XJC190010), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JQ-309). SP is funded by the Royal Society.Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.Publisher PDFPeer reviewe

    Distinct components of cardiovascular health are linked with age-related differences in cognitive abilities

    Get PDF
    Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic contributions of multiple cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to cognition. In a population-based deep-phenotyping study (n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is associated with cognitive decline from expected performance. The effect was stronger in older adults. Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Peer reviewe
    corecore