314 research outputs found

    Incarcerated vermiform appendix in a left-sided inguinal hernia

    Get PDF
    We report here of a patient with an incarcerated vermiform appendix occurring in a left-sided indirect inguinal hernia. Occasionally, appendices are found in a hernial sac; however, the finding of an incarcerated vermiform appendix in an inguinal hernia on the left side is very unusual and has only been previously described once. The patient suffering this rare entity underwent appendectomy and repair of the hernia and experienced an uneventful postoperative recovery. The possibility of the presence of a situs inversus, or malrotation, as an underlying cause for the observed pathology was excluded by x-ray examinatio

    Electron spin mediated distortion in metallic systems

    Get PDF
    The deviation of positions of atoms from their ideal lattice sites in crystalline solid state systems causes distortion and it causes variation in structural [1] and functional properties [2]. Severe lattice distortion has been proposed to be one of the core-effect in high-entropy alloys. But the fundamental mechanism of distortion at atomic scale is missing for real three-dimensional metallic systems. The present investigation aims to develop mechanistic understanding of atomic scale distortion in metallic systems in terms of the magneto-volume effects. The correlation between charge-disproportion, spin fluctuations, magneto-volume effects and Fermi surface nesting has been highlighted

    Universal architecture of bacterial chemoreceptor arrays

    Get PDF
    Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed “trimer of dimers” organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Hidden Mn magnetic-moment disorder and its influence on the physical properties of medium-entropy NiCoMn solid solution alloys

    Get PDF
    The ab initio Korringa-Kohn-Rostoker method combined with the coherent potential approximation (CPA) was employed to investigate the electronic, magnetic, and transport properties of medium-entropy face-centered-cubic (fcc) NiCoMn solid solution alloys. By comparing the CPA electronic structure with that from supercell calculations, we uncovered an unconventional CPA ground state, which correctly distinguishes two equally populated Mn CPA components—with large spin moments but opposite orientations. Using the spin spiral calculations, we further demonstrated that this ground state is most energetically favorable in the presence of spin noncollinearity, and no significant longitudinal spin fluctuation is observed, justifying the applicability of the Heisenberg model. The finite-temperature magnetism was further studied using different approximations based on the Heisenberg model, and we found the Mn moments to be fully disordered at low temperature due to a small net effective Weiss field on Mn. In addition, the magnetic effect on the electron scattering at finite temperatures was evaluated and compared with other scattering mechanisms. Since the magnetization-induced electron scattering is almost saturated in the ground state, (full) spin disorder only yields a small addition to the resistivity, whereas the thermal displacements increase it modestly. Finally, we elucidate the role of hydrostatic pressure on the magnetic and transport properties. These findings reflect the importance of the magnetic signatures on the physical properties of alloys, and they provide a window into magnetism-controlled electronic structure and energy dissipation

    Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation

    Get PDF
    When mammalian spermatozoa become capacitated they acquire, among other activities, chemotactic responsiveness and the ability to exhibit occasional events of hyperactivated motility—a vigorous motility type with large amplitudes of head displacement. Although a number of roles have been proposed for this type of motility, its function is still obscure. Here we provide evidence suggesting that hyperactivation is part of the chemotactic response. By analyzing tracks of spermatozoa swimming in a spatial chemoattractant gradient we demonstrate that, in such a gradient, the level of hyperactivation events is significantly lower than in proper controls. This suggests that upon sensing an increase in the chemoattractant concentration capacitated cells repress their hyperactivation events and thus maintain their course of swimming toward the chemoattractant. Furthermore, in response to a temporal concentration jump achieved by photorelease of the chemoattractant progesterone from its caged form, the responsive cells exhibited a delayed turn, often accompanied by hyperactivation events or an even more intense response in the form of flagellar arrest. This study suggests that the function of hyperactivation is to cause a rather sharp turn during the chemotactic response of capacitated cells so as to assist them to reorient according to the chemoattractant gradient. On the basis of these results a model for the behavior of spermatozoa responding to a spatial chemoattractant gradient is proposed
    corecore