60 research outputs found

    A study of tuberculosis in road traffic-killed badgers on the edge of the British bovine TB epidemic area

    Get PDF
    The role of badgers in the geographic expansion of the bovine tuberculosis (bTB) epidemic in England is unknown: indeed there have been few published studies of bTB in badgers outside of the Southwest of England where the infection is now endemic in cattle. Cheshire is now on the edge of the expanding area of England in which bTB is considered endemic in cattle. Previous studies, over a decade ago when bovine infection was rare in Cheshire, found no or only few infected badgers in the south eastern area of the county. In this study, carried out in 2014, road-killed badgers were collected through a network of local stakeholders (farmers, veterinarians, wildlife groups, government agencies), and Mycobacterium bovis was isolated from 21% (20/94) badger carcasses. Furthermore, there was strong evidence for co-localisation of M. bovis SB0129 (genotype 25) infection in both badgers and cattle herds at a county scale. While these findings suggest that both badgers and cattle are part of the same geographically expanding epidemic, the direction of any cross-species transmission and the drivers of this expansion cannot be determined. The study also demonstrated the utility of using road-killed badgers collected by stakeholders as a means of wildlife TB surveillance

    Identification of a predominant isolate of Mycobacterium tuberculosis using molecular and clinical epidemiology tools and in vitro cytokine responses

    Get PDF
    BACKGROUND: Tuberculosis (TB) surveillance programs in Canada have established that TB in Canada is becoming a disease of geographically and demographically distinct groups. In 1995, treaty status aboriginals from the province of Manitoba accounted for 46% of the disease burden of this sub-group in Canada. The TB incidence rates are dramatically high in certain reserves of Manitoba and are equivalent to rates in African countries. The objective of our study was to identify prevalent isolates of Mycobacterium tuberculosis in the patient population of Manitoba using molecular epidemiology tools, studying the patient demographics associated with the prevalent strain and studying the in vitro cytokine profiles post-infection with the predominant strain. METHODS: Molecular typing was performed on all isolates available between 1992 to1997. A clinical database was generated using patient information from Manitoba. THP-1 cells were infected using strains of M. tuberculosis and cytokine profiles were determined using immunoassays for cytokines IL-1β, IL-10, IL-12, IFN-γ and TNF-α. RESULTS: In Manitoba, 24% of the disease burden is due to a particular M. tuberculosis strain (Type1). The strain is common in patients of aboriginal decent and is responsible for at least 87% of these cases. Cytokine assays indicate that the Type1 strain induces comparatively lower titers of IL-1β, IFN-γ and TNF-α in infected THP-1 cells as compared to H37Ra and H37Rv strains. CONCLUSION: In Manitoba, Type1 strain is predominant in TB patients. The majority of the cases infected with this particular strain are newly active with a high incidence of respiratory disease, positive chest radiographs and pulmonary cavities. In vitro secretion of IL-1β, IFN-γ and TNF-α is suppressed in Type1 infected culture samples when compared to H37Ra and H37Rv infected cells

    Experimental Mycobacterium bovis infection in three white rhinoceroses (Ceratotherium simum):Susceptibility, clinical and anatomical pathology

    Get PDF
    Tuberculosis caused by Mycobacterium bovis is endemic in the African buffalo (Syncerus caffer) population in the Kruger National Park and other conservation areas in South Africa. The disease has been diagnosed in a total of 21 free ranging or semi-free ranging wildlife species in the country with highly variable presentations in terms of clinical signs as well as severity and distribution of tuberculous lesions. Most species are spillover or dead-end hosts without significant role in the epidemiology of the disease. White rhinoceroses (Ceratotherium simum) are translocated from the Kruger National Park in substantial numbers every year and a clear understanding of their risk to manifest overt tuberculosis disease and to serve as source of infection to other species is required. We report the findings of experimental infection of three white rhinoceroses with a moderately low dose of a virulent field isolate of Mycobacterium bovis. None of the animals developed clinical signs or disseminated disease. The susceptibility of the white rhinoceros to bovine tuberculosis was confirmed by successful experimental infection based on the ante mortem isolation of M. bovis from the respiratory tract of one rhinoceros, the presence of acid-fast organisms and necrotizing granulomatous lesions in the tracheobronchial lymph nodes and the detection of M. bovis genetic material by PCR in the lungs of two animals

    Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean

    Get PDF
    Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M. tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen

    First Description of Natural and Experimental Conjugation between Mycobacteria Mediated by a Linear Plasmid

    Get PDF
    Background: in a previous study, we detected the presence of a Mycobacterium avium species-specific insertion sequence, IS1245, in Mycobacterium kansasii. Both species were isolated from a mixed M. avium-M. kansasii bone marrow culture from an HIV-positive patient. the transfer mechanism of this insertion sequence to M. kansasii was investigated here.Methodology/Principal Findings: A linear plasmid (pMA100) was identified in all colonies isolated from the M. avium-M. kansasii mixed culture carrying the IS1245 element. the linearity of pMA100 was confirmed. Other analyses suggested that pMA100 contained a covalently bound protein in the terminal regions, a characteristic of invertron linear replicons. Partial sequencing of pMA100 showed that it bears one intact copy of IS1245 inserted in a region rich in transposase-related sequences. These types of sequences have been described in other linear mycobacterial plasmids. Mating experiments were performed to confirm that pMA100 could be transferred in vitro from M. avium to M. kansasii. pMA100 was transferred by in vitro conjugation not only to the M. kansasii strain from the mixed culture, but also to two other unrelated M. kansasii clinical isolates, as well as to Mycobacterium bovis BCG Moreau.Conclusions/Significance: Horizontal gene transfer (HGT) is one of most important mechanisms leading to the evolution and diversity of bacteria. This work provides evidence for the first time on the natural occurrence of HGT between different species of mycobacteria. Gene transfer, mediated by a novel conjugative plasmid, was detected and experimentally reproduced.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Cooperacion Interuniversitaria UAM-Banco Santander con America Latina (CEAL), UAM, SpainConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Escola Paulista Med, São Paulo, BrazilLab Nacl Comp Cient, Petropolis, BrazilUniv Autonoma Madrid, Fac Med, Dept Prevent Med, Madrid, SpainInst Adolfo Lutz Registro, Nucleo TB & Micobacterioses, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Escola Paulista Med, São Paulo, BrazilFAPESP: FAPESP - 06/01533-9Web of Scienc

    The Changing Face of the Epidemiology of Tuberculosis due to Molecular Strain Typing: A Review

    Full text link
    • …
    corecore