42 research outputs found

    Natural HLA-B*2705 protein ligands with glutamine as anchor motif: implications for HLA-B27 association with spondyloarthropathy

    Get PDF
    The presentation of short viral peptide antigens by human leukocyte antigen (HLA) class I molecules on cell surfaces is a key step in the activation of cytotoxic T lymphocytes, which mediate the killing of pathogen-infected cells or initiate autoimmune tissue damage. HLA-B27 is a well known class I molecule that is used to study both facets of the cellular immune response. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HLA-B*2705(+) cells, we identified 200 naturally processed HLA-B*2705 ligands. Our analyses revealed that a change in the position (P) 2 anchor motif was detected in the 3% of HLA-B*2705 ligands identified. B*2705 class I molecules were able to bind these six GlnP2 peptides, which showed significant homology to pathogenic bacterial sequences, with a broad range of affinities. One of these ligands was able to bind with distinct conformations to HLA-B27 subtypes differentially associated with ankylosing spondylitis. These conformational differences could be sufficient to initiate autoimmune damage in patients with ankylosing spondylitis-associated subtypes. Therefore, these kinds of peptides (short, with GlnP2, and similar low affinity to all HLA-B27 subtypes tested but with unlike conformations in differentially ankylosing spondylitis-associated subtypes) must not be excluded from future researches involving potential arthritogenic peptides.This work was supported by grants from the Programa Ramón y Cajal and the Ministerio de Ciencia e Innovación (to D. L.) and from the Israel Science Foundation (ISF 916/05) (to A. A.).N

    Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence

    Get PDF
    BACKGROUND: Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE: The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.This work was supported by the Spanish Ministry of Economy grants SAF2014-58052 and “Acción Estratégica en Salud” 2018 to DL, SAF-2013-45232-R and SAF-2017-88089-R to ME, and by Israel Science Foundation, grant No. 1435/16 to AA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression

    Get PDF
    Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions

    The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus

    Get PDF
    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design.This work was supported by the Spanish Ministry of Economy grants BIO2011-25636 to D.L. and to A. A. from the ISF 916/05. The funding agencies had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We have no conflicting financial interestsS

    The HLA-DP peptide repertoire from human respiratory syncytial virus is focused on major structural proteins with the exception of the viral polymerase.

    Get PDF
    The recognition by specific T helper cells of viral antigenic peptides complexed with HLA class II molecules exposed on the surface of antigen presenting cells is the first step of the complex cascade of immunological events that generates the protective cellular and humoral immune responses. The HLA class II-restricted helper immune response is critical in the control and the clearance of human respiratory syncytial virus (HRSV) infection, a pathogen with severe health risk in pediatric, immunocompromised and elderly populations. In this study, a mass spectrometry analysis was used to identify HRSV ligands bound to HLA-DP class II molecules present on the surface of HRSV-infected cells. Among the thousands of cellular peptides bound to HLA class II proteins in the virus-infected cells, sixty-four naturally processed viral ligands, most of them included in complex nested set of peptides, were identified bound to HLA-DP molecules. These viral ligands arose from five of six major structural HRSV proteins: attachment, fusion, matrix, nucleoprotein, and phosphoprotein. In contrast, no HLA-DP ligands were identified from polymerase protein, the largest HRSV protein that includes half of the viral proteome. These findings have important implications for analysis of the helper immune response as for antiviral vaccine design. SIGNIFICANCE: The existence of a supertype including five alleles that bind a peptide repertoire very similar make HLA-DP class II molecules an interesting target for the design of vaccines. Here, we analyze the HLA-DP-restricted peptide repertoire against the human respiratory syncytial virus, a pathogen that represents a high health risk in infected pediatric, immunocompromised and elderly populations. This repertoire is focused on major structural proteins with the exception of the viral polymerase.This work was supported by the Spanish Ministry of Economy grants BIO2011- 25636, SAF2014-58052, and “Acción Estratégica en Salud” to D.L., and by Israel Science Foundation, grant No. 1435/16 to A. A. The funding agencies had no role in the study design, data collection, analysis decision to publish, or preparation of the manuscript. The authors had no conflicting financial interests.S

    The Turnover Kinetics of Major Histocompatibility Complex Peptides of Human Cancer Cells*

    No full text

    Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus

    Get PDF
    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design.This work was supported by the Spanish Ministry of Economy grants BIO2011–25636 to D.L. and to A. A. from the ISF 916/05. The funding agencies had no role in the study design, data collection, analysis decision to publish, or preparation of the manuscript. We had no conflicting financial interests.S

    Natural Spleen Cell Ligandome in Transporter Antigen Processing-Deficient Mice.

    Get PDF
    Peptides generated by proteases in the cytosol must be translocated to endoplasmic reticulum lumen by the transporter associated with antigen processing (TAP) prior to their assembly with major histocompatibility complex (MHC) class I molecules. Nonfunctional TAP complexes produce a drastic decrease of the MHC class I/peptide complexes presented on the cell surface. Previously, the cellular MHC class I ligandome from TAP-deficient cell lines was determined, but similar analysis from normal tissues remains incomplete. Using high-throughput mass spectrometry to analyze the MHC-bound peptide pools isolated from ex vivo spleen cells of TAP-deficient mice, we identified 210 TAP-independent ligands naturally presented by murine MHC class I molecules. This ligandome showed increased peptide lengths, presence of multiple nested set peptides, and low theoretical MHC binding affinity. The gene ontology enrichment analysis of parental proteins of this TAP-independent subligandome showed almost exclusively enrichment in tissue-specific biological processes related to the immune system as would be expected. Also, cellular components of the extracellular space (namely proteins outside the cell but still within the organism excluding the extracellular matrix) were specifically associated with TAP-independent antigen processing from these ex vivo mice cells. In addition, functional protein association network analysis revealed low protein-protein interactions between parental proteins from the TAP-independent ligandome. Finally, predominant endoproteolytic peptidase specificity for Leu/Phe residues in the P1 position of the scissile bond at both ligand termini was found for the ex vivo TAP-independent ligands. These data indicate that the TAP-independent ligandome from ex vivo cells derives from a more diverse collection of both endoprotease activities and parental proteins and where the cell origin and contribution of the extracellular environment are more relevant than in its equivalent cell lines.This work was supported by the Spanish Ministry of Economy grants SAF2014-58052 and “Acción Estratégica en Salud” MPY 388/18 to D.L., and by Israel Science Foundation, grant No. 1435/16 to A. A. The funding agencies had no role in the study design, data collection, analysis decision to publish, or preparation of the manuscript.S

    The origin of proteasome-inhibitor resistant HLA class I peptidomes: a study with HLA-A*68:01.

    No full text
    Some HLA class I molecules bind a significant fraction of their constitutive peptidomes in the presence of proteasome inhibitors. In this study, A*68:01-bound peptides, and their parental proteins, were characterized through massive mass spectrometry sequencing to refine its binding motif, including the nearly exclusive preference for C-terminal basic residues. Stable isotope tagging was used to distinguish proteasome-inhibitor sensitive and resistant ligands. The latter accounted for less than 20% of the peptidome and, like in HLA-B27, arose predominantly from small and basic proteins. Under the conditions used for proteasome inhibition in vivo, epoxomicin and MG-132 incompletely inhibited the hydrolysis of fluorogenic substrates specific for the tryptic or for both the tryptic and chymotryptic subspecificities, respectively. This incomplete inhibition was also reflected in the cleavage of synthetic peptide precursors of A*68:01 ligands. For these substrates, the inhibition of the proteasome resulted in altered cleavage patterns. However these alterations did not upset the balance between cleavage at peptide bonds resulting in epitope destruction and those leading to their generation. The results indicate that inhibitor-resistant HLA class I ligands are not necessarily produced by non-proteasomal pathways. However, their generation is not simply explained by decreased epitope destruction upon incomplete proteasomal inhibition and may require additional proteolytic steps acting on incompletely processed proteasomal products.This work was supported by grants SAF2008/00461 and RD08/0075 from the Ministry of Science and Innovation, and an institutional grant of the Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa and by the Israel Science Foundation (ISF 916/05 to AA).Peer reviewe
    corecore